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Abstract 
We develop new semi-parametric methods for estimating treatment effects. We focus on settings where the 
outcome distributions may be thick tailed, where treatment effects may be small, where sample sizes are 
large, and where assignment is completely random. This setting is of particular interest in recent online 
experimentation. We propose using parametric models for the treatment effects, leading to semi- 
parametric models for the outcome distributions. We derive the semi-parametric efficiency bound for the 
treatment effects for this setting, and propose efficient estimators. In the leading case with constant 
quantile treatment effects, one of the proposed efficient estimators has an interesting interpretation as a 
weighted average of quantile treatment effects, with the weights proportional to minus the second 
derivative of the log of the density of the potential outcomes. Our analysis also suggests an extension of 
Huber’s model and trimmed mean to include asymmetry. 
Keywords: average treatment effects, potential outcomes, quantile treatment effects, semi-parametric efficiency bound 

1 Introduction 
Historically, randomised experiments were often carried out in medical and agricultural settings. 
In these settings, sample sizes were often modest, typically on the order of hundreds or (more 
rarely) thousands of units. Outcomes commonly studied included mortality or crop yield, and 
were characterised by relatively well-behaved distributions with thin tails. Standard analyses in 
those settings typically involved estimating the average effect of the treatment using the difference 
in average outcomes by treatment group, followed by constructing confidence intervals using 
Normal distribution-based approximations. These methods originated in the 1920s, e.g.  
Neyman (1923/1990) and Fisher (1937), but they continue to be the standard in modern applica-
tions. See Wu and Hamada (2011) for a recent discussion. 

More recently many experiments are conducted online (see Kohavi et al., 2020 for an over-
view), leading to substantially different settings. Gupta et al. (2019, p. 20) claim that 
‘Together these organizations [Airbnb, Amazon, Booking.com, Facebook, Google, LinkedIn, 
Lyft, Microsoft, Netflix, Twitter, Uber, and Yandex] tested more than one hundred thousand 
experimental treatments last year’. The settings for these online experiments are substantially 
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different from those in biomedical and agricultural settings. First, the experiments are often on a 
vastly different scale, with the number of units on the order of millions to tens of millions. 
Second, the outcomes of interest, variables such as time spent by a consumer, sales per consumer 
or payments per service provider, are characterised by distributions with extremely thick tails. 
Third, the treatment effects are often extremely small relative to the standard deviation of the 
outcomes, even if their magnitude remains substantively important. For example, Lewis and 
Rao (2015) analyse challenges with statistical power in experiments designed to measure the effect 
of digital advertising on consumer expenditures. They discuss a hypothetical experiment where the 
average expenditure per potential customer is $7 with a standard deviation of $75, and where an 
average treatment effect of $0.35 (0.005 of a standard deviation) would be substantial in the sense 
of being highly profitable for the company given the cost of advertising. In the Lewis and Rao ex-
ample, an experiment with power 0.8 for a treatment effect of $0.35, and a significance level for 
the two-sided test of means of 0.05, would require a sample size of 1.4 million customers. As a result, 
confidence intervals for the average treatment effect are likely to include zero even if the true effects 
were substantively important and samples are large. Even if a confidence interval for the average 
treatment effect includes zero, there may be evidence about the presence of causal effects of the treat-
ment. Using Fisher exact p-value calculations (Fisher, 1937) with well-chosen statistics (e.g. the 
Hodges–Lehman difference in average ranks, Rosenbaum, 1993), one may well be able to establish 
conclusively that treatment effects are present. However, the magnitude of the treatment effect, ra-
ther than its presence, is typically important for decision makers. 

This sets the stage for the problem we address in this paper. In the absence of additional infor-
mation, there exists no estimator for the average treatment effect that is more efficient than the 
difference in means. To obtain more precise estimates, we either need to change the focus away 
from the average treatment effect, or we need to make additional assumptions. One approach 
to changing the question, at least slightly, is to transform the outcome (e.g. taking logarithms 
or winsorising) followed by a standard analysis estimating the average effect of the treatment 
on the transformed outcome. In this paper, like Taddy et al. (2016) and Tripuraneni et al. 
(2021), we choose a different approach, namely making additional assumptions on the joint dis-
tribution of the outcomes and treatment indicator. 

The key conceptual contribution is that we postulate a semi-parametric model for the outcome dis-
tributions by treatment group. The leading example of this semi-parametric model corresponds to re-
stricting the quantile treatment effects to be identical across quantiles, thus assuming that the two 
conditional outcome distributions differ only by a shift. We do not directly use parametric models 
for the outcome distributions by treatment group, because specifying such a model that well approx-
imates the full outcome distribution is more challenging than postulating a model for the treatment 
effects. Unlike outcomes, treatment effects tend to be small and often have little variation. For this 
semi-parametric set-up (e.g. Bickel & Doksum, 2015; Bickel et al., 1993), we derive the influence func-
tion, the semi-parametric efficiency bound, and we propose semi-parametrically efficient estimators. 

It turns out that the parametrisation of the treatment effect can be very informative, potentially 
making the asymptotic variance for the corresponding semi-parametric estimators substantially 
smaller than the asymptotic variance for the difference in means estimator. For example, if the po-
tential outcomes have Cauchy distributions, the variance bound for the average treatment effect is 
infinite because the moments of the Cauchy distribution do not exist. However, under the constant 
additive treatment effect assumption (implying that the quantile treatment effects are identical), 
the semi-parametric variance bound for the treatment effect is finite. 

In addition, even if this model for the treatment effect is misspecified, the estimand correspond-
ing to proposed estimators continue to have a causal interpretation, as a weighted average of quan-
tile treatment effects, making it an easy-to-implement and attractive choice in practice. 

The remainder of the paper is organised as follows. First, in Section 2, we consider the leading 
case where we assume the two potential outcome distributions differ only by a shift, so that the 
quantile treatment effects are all identical. This is implied by, but does not require, the assumption 
that the treatment effect is additive and constant. In Section 3, we consider the case where we have 
more flexible parametric models linking the two conditional outcome distributions. In Section 4, 
we provide some simulation evidence regarding the finite sample properties of the proposed meth-
ods in controlled settings and provide real data illustrations. Section 5 concludes. A software im-
plementation for R is available at https://github.com/michaelpollmann/parTreat.  
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2 Constant quantile treatment effects 
In this section, we focus on a special case with constant quantile treatment effects. After setting up 
the problem formally, we discuss robust estimation in the one-sample case to motivate a class of 
weighted quantile treatment effect estimators. We then discuss the formal semi-parametric prob-
lem and show adaptivity of the proposed estimators. Finally, we consider partial adaptivity and 
robustness. 

This case is closely related to the classical two-sample problem, as discussed in Hodges and 
Lehmann (1963), and to problems considered in the literature on robust descriptive statistics as 
in Bickel and Lehmann (1975a, 1975b), K. Doksum (1974), K. A. Doksum and Sievers (1976), 
and in particular Jaeckel (1971a, 1971b). Section 2 can be interpreted as an extension of 
Jaeckel’s work, in a causal inference framework, to the two-sample context in the setting of semi- 
parametric theory. In the process of doing so, we generalise Huber’s model (Huber, 1964) and the 
estimator based on trimmed means to include asymmetry, and present a simplified version of the 
results of Chernoff et al. (1967) (see also Bickel (1967), Govindarajulu et al. (1967) and Stigler 
(1974) on linear combinations of order statistics). In particular, we exhibit efficient M (maximum- 
likelihood type) and L (linear combination of order statistics) estimates for outcome distributions 
that are known up to a shift. We then analyse fully adaptive estimates of both types, as discussed in  
Bickel et al. (1993), and partially adaptive estimates, in particular flexible trimmed means (Jaeckel, 
1971a). In this setting, the problem is closely related to the literature on robust estimation of lo-
cations (e.g. Bickel & Lehmann, 1975a, 1975b, 1976, 2012; Hampel et al., 2011; Huber, 2011). 

2.1 Set-up 
We consider a set-up with a randomised experiment with n observations drawn randomly from a 
large population. With probability p ∈ (0, 1) a unit is assigned to the treatment group. Let n1 and 
n0 = n − n1 denote the number of units assigned to the treatment and control group. Following  
Neyman (1923/1990), Rubin (1974), and Imbens and Rubin (2015), let Yi(0) and Yi(1) denote 
the two potential outcomes for unit i, and let the treatment be denoted by Zi ∈ {0, 1}. We assume 
that the treatment assignment for one unit does not affect the outcomes for any other unit. For all 
units in the sample we observe the pair (Zi, Yi), where Yi ≡ Yi(Zi). The cumulative distribution 
functions for the two potential outcomes are F0(y) and F1(y) with inverses F−1

0 (u) and F−1
1 (u), 

and means and variances μ0, μ1, σ2
0, and σ2

1. Note that by the random assignment assumption 
the distribution of the potential outcome Yi(z) is identical to the conditional distribution of the re-
alised outcome Yi conditional on Zi = z: Fz(y) ≡ Pr(Yi(z) ≤ y) = Pr(Yi ≤ y ∣ Zi = z). 

We are interested in the average treatment effect in the population, 

τ ≡ E[Yi(1) − Yi(0)]. (2.1) 

The natural estimator for this average treatment effect is the difference in sample averages 

τ̂ = Y1 − Y0, where Y1 =
1
n1

􏽘n

i=1

ZiYi, Y0 =
1
n0

􏽘n

i=1

(1 − Zi)Yi, (2.2) 

are the averages of the observed outcomes by treatment group. Under standard conditions n1
n →

P
p, 

n0
n →

P
(1 − p), and 

��
n
√

(τ̂ − τ)⇒
d
N 0,

σ2
0

1 − p
+

σ2
1

p

􏼒 􏼓

. (2.3) 

The concern is that this conventional estimator τ̂ may be imprecise. In particular in settings where 
the outcome distribution is thick tailed, sometimes extremely so, confidence intervals may be wide. 
We address this issue in this paper by imposing some restrictions on the two potential outcome 
distributions. Following the semi-parametric literature (Bickel & Lehmann, 1975a, 1975b,  
1976, 2012), we exploit these restrictions to develop new estimators.  
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2.2 Weighted average quantile treatment effects 
It is useful to start with quantile treatment effects (Lehmann & D’Abrera, 1975), which play an 
important role in our set-up. For quantile u ∈ (0, 1), define 

Δ(u) ≡ F−1
1 (u) − F−1

0 (u), 0 ≤ u ≤ 1. (2.4) 

These quantile treatment effects are closely related to what K. Doksum (1974) and K. A. Doksum 
and Sievers (1976) label the response function: R(y) ≡ F−1

1 (F0(y)) − y = Δ(F0(y)). The natural 
estimate for the quantile treatment effect is the empirical plug-in, Δ̂(u) ≡ F̂−1

1 (u) − F̂−1
0 (u), where 

F̂−1
1 (u) equals Y(1)

([n1u]), defined as the [n1u]th order statistic of Yi ∣ Zi = 1, i = 1, . . . , n1, where n1 = 
􏽐n

i=1 Zi and similarly for F̂−1
0 (u). 

A natural class of parameters summarising the difference between the Yi(1) and Yi(0) distribu-
tions consists of weighted averages of the quantile treatment effects: 

τ(F0, F1; W) ≡ ∫10 Δ(u) dW(u), 

where the weights integrate to one, W(0) = 0, W(1) = 1. Different choices for the weight function 
correspond to different estimands. The constant weight case, W′(u) ≡ 1, corresponds to the popu-
lation average treatment effect τ = E[Yi(1) − Yi(0)]. The median corresponds to the case where 
W(·) puts all its mass at 1/2. We thus allow W(·) to permit point masses. 

For a given weight function W(·), we can estimate the parameter τ(F0, F1; W) using a weighted 
average quantile (waq) estimator: 

τ̂W ≡ τ(F̂0, F̂1; W) = ∫10
􏼐
F̂−1

1 (u) − F̂−1
0 (u)

􏼑
dW(u)

=
1
n1

􏽘n1

i=1

w(1)
i Y(1)

(i) −
1
n0

􏽘n0

i=1

w(0)
i Y(0)

(i) ,
(2.5) 

where 

w(z)
i ≡ W

i
nz

􏼒 􏼓

− W
i − 1
nz

􏼒 􏼓

and Y(z)
(i) again are the order statistics in treatment group z. 

2.3 Efficient estimation of waq treatment effects using influence functions 
To understand the properties of the waq estimator ̂τW , we begin by considering the non-parametric 
model for a single sample, with cumulative distribution F(·) where the interest is in the weighted 
quantile ∫∞−∞ F−1(u) dW(u) for a given weight funtion W(·). For this one-sample case, Jaeckel 
(1971a, 1971b), building on Chernoff et al. (1967), shows that under simple conditions on W 
and F, for a sample size of n, 

∫10
􏼐
F̂−1(u) − F−1(u)

􏼑
dW(u) = ∫∞−∞ ψ(x, F, W)d(F̂(x) − F(x)) + oP(n−1/2), (2.6) 

where the influence function ψ is related to the weight function W by 

ψ(x, F, W) = − ∫∞x
1

f (y)
dW(F(y)) + ∫∞−∞

F(y)
f (y)

dW(F(y)). (2.7) 

The last term ensures that ∫∞−∞ ψ(x, F, W) dF(x) = 0.  
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Note that if the derivatives ψ′(·) and W′(·) = w(·) exist, by equation (2.7), 

ψ(x, F, W) = − ∫∞x w(F(y)) dy + ∫∞−∞ F(y)w(F(y)) dy 

so that ψ′(x, F, W) = w(F(x)). Note that for the median, equation (2.7) yields, 

ψ(x, F, W) = sign x−F−1 1
2( )( )

2f F−1 1
2( )( )

. Our formula (2.7) is slightly more general than Jaeckel’s, and in the  

online supplementary appendix, we establish sufficient conditions on the cumulative distribution 
function F(·) and the weight function W(·) for our version of his result to hold. 

Expression (2.6) in turn implies that 

∫10 (F̂−1(u) − F−1(u)) dW(u)⇒
d
N (0, σ2(F, W)), 

where the variance equals the expectation of the square of the influence function: 

σ2(F, ω) = ∫∞−∞ ψ(x, F, W)2 dF(x).

The results in Jaeckel (1971a, 1971b) for the one-sample case extend in the following way to the 
two-sample setting that is our primary focus. If τ(F0, F1, W) is estimated by τ̂W in equation (2.5), 
then, under regularity conditions given in the online supplementary appendix, Theorem A.1, 

τ̂W = τ(F0, F1, W) +
1
n

􏽘n

i=1

Zi
ψ(Yi, F1, W)

p
− (1 − Zi)

ψ(Yi, F0, W)
1 − p

􏼒 􏼓

+ oP(n−1/2), (2.8) 

where ψ(x, F, W) is given by equation (2.7). 

2.4 Constant quantile treatment effects 
Now let us return to the primary focus of this section, the estimation of the average treatment ef-
fect under the constant quantile treatment effect assumption. Our key assumption in this section is 
that the quantile treatment effects are all equal: 

τ(u) = τ, ∀u (2.9) 

and thus, for any weight functions W(·), 

τ(F0, F1, W) = τ. (2.10) 

Later, in Section 3, we generalise this to allow for a more general parametric function linking the 
quantile treatment effects. One way to motivate the constant quantile treatment effect assumption 
is to assume that the unit-level treatment effects are all constant, Yi(1) − Yi(0) = τ for all units 
i = 1, . . . , n. This implies, but is not implied by, the assumption that all the quantile treatment ef-
fects are identical. The assumption of constant unit-level treatment effects is very strong, implying 
rank-invariance, which is in fact stronger than what we need. 

In this section, for expository reasons we further assume that we know the control outcome dis-
tribution F0(·) up to a shift. That is, F0(x) = F(x − η), where F(·) (with derivative f) is known and η 
unknown. Because of the constant quantile treatment effect assumption, the treated potential out-
come distribution is also known up to a shift, F1(x) = F(x − η − τ). Assuming that F0(·) is known up 
to a shift is unrealistic in practice, and we remove this assumption below in Section 2.5, but it al-
lows us to focus in this section on some key insights. 

For this fully parametric model (with unknown parameters η and τ), if the Fisher information 
I(f ) = ∫ ( f ′

f )2(x)f (x) dx = ∫ (− f ′

f )′(x)f (x) dx satisfies 0 < I(f ) < ∞, the maximum likelihood estima-
tor of τ, suitably regularised (e.g. Le Cam & Yang, 1988), has influence function, 

ψ f ,η(Z, Y; τ) = −
1

I(f )
·

Z
p
·

f ′

f
(Y − η − τ) −

1 − Z
1 − p

·
f ′

f
(Y − η)

􏼒 􏼓

. (2.11)  
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There is an interesting alternative efficient estimator in this known f (·) case. Suppose f ′/f is abso-
lutely continuous. Then the weight function 

wf (F(x)) ≡
1

I(f )
−

f ′

f

􏼒 􏼓′

(x) or wf (u) =
1

I(f )
−

f ′

f

􏼒 􏼓′

(F−1(u)) (2.12) 

provides an efficient L estimate when substituted appropriately in (2.6), leading to 

τ̂(F0, F1, W) = ∫10 (F̂−1
1 (u) − F̂−1

0 (u))wf (u) du. (2.13) 

It is interesting to inspect the form of the weights wf (u). These weights are proportional to minus 
the second derivative of the logarithm of the density function. In other words, we can approximate 
the efficient estimator by first estimating a large number of quantile treatment effects. Under the 
model these quantile treatment effects are all identical. To efficiently estimate that common treat-
ment effect we can simply use a weighted average of the estimated quantile treatment effects. It 
turns out the optimal weights simplify to minus the second derivative of the logarithm of the dens-
ity. For the Normal distribution, that means the weights are constant. For the Double Exponential 
distribution the weights put point mass at the median. For the Cauchy distribution the weights are 
proportional to − cos (2πu) sin (πu)2. Interestingly these weights are negative for some quantiles. 
One can of course see this by inspecting the estimated weights. If one is concerned by the negative 
weights one can also modify them by restricting them to be nonnegative. Finally, note that impli-
citly the influence function estimator also has the negative weights in such cases because the two 
estimators are first order equivalent. 

A final comment connects this to common methods for dealing with thick-tailed distributions. 
In practice many researchers use winsorising to deal with these problems. This can be interpreted 
as using a waq estimator with a particular set of weights. Specifically, with winsorising at the q and 
1 − q quantiles, the implicit weights are constant on the interval (q, 1 − q), and then put additional 
point mass q on the qth and (1 − q)th quantiles. As discussed in Bickel (1965), the asymptotic 
properties of the winsorising estimator depend delicately on the density at the winsorising quan-
tiles. In our simulations this estimator does not perform particularly well. Like other settings, there 
is tension here between having an interpretable target that may not be precisely estimable (e.g. the 
average effect of the treatment), vs. a precisely estimable estimand whose interpretation is more 
complex (e.g. the waq effect). This tension arises also in other settings. An example is the estima-
tion of average treatment effects under unconfoundedness where weighting by the confounders 
may affect both the interpretation of the estimand and the precision with which we can estimate 
it (Crump et al., 2009; Li et al., 2018). Another setting is that discussed in Vansteelandt and Dukes 
(2022). The use of quantile methods for estimating treatment effects in thick-tailed settings has 
been studied in Firpo (2007); Firpo et al. (2009), but unlike in those papers, our focus is on the 
overall treatment effect, rather than the effect at specific quantiles. 

2.5 Fully adaptive estimation 
As stated earlier, in practice we do not know the density f (·) up to location. However, in this case 
with constant quantile treatment effects this knowledge does not matter up to first order. 
Because of the orthogonality of the tangent space with respect to f, it follows from semi- 
parametric theory (Bickel et al., 1993) that even if the density f is unknown, substituting a suit-
able estimate of f (and η) in (2.11) or (2.13), will yield estimators with influence functions given 
by (2.11), or equivalently by 

ψ f0
(Z, Y; τ) = −

1
I(f0)
·

Z
p
·

f ′0
f0

(Y − τ) −
1 − Z
1 − p

·
f ′0
f0

(Y)
􏼒 􏼓

, (2.14) 

where f0(·) ≡ F′0(·) ≡ f ( · −η). 
For our proposed estimator we split the data randomly into two parts, with the two sub-samples 

denoted by A, corresponding to {(Zi, Yi) : 1 ≤ i ≤ n
2 }, and B, corresponding to {(Zi, Yi) : n

2 < i ≤ n}.  
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The M estimate using the estimated f̂ (·) is of the form, 

τ̂if ≡
τ̃(A) + τ̃(B)

2
+

1
n

􏽘n/2

i=1

ψf̂0(B)
(Zi, Yi; τ̃(B)) +

􏽘n

i=1+n/2

ψf̂0(A)
(Zi, Yi; τ̃(A))

􏼨 􏼩

, (2.15) 

where f̂0(A) is an estimate of f0 using {(Zi, Yi) : 1 ≤ i ≤ n
2 }, and f̂0(B) using {(Zi, Yi) : n

2 < i ≤ n}, a one- 
step estimate using the sample splitting technique (Klaassen, 1987). ̃τ(A) and ̃τ(B) are initial 

��
n
√

con-
sistent estimates based on the two sub-samples, for example based on the difference in medians or 
other quantiles. Algorithm 1 shows the key steps; additional details are given in the online 
supplementary material. 

We can also construct an L estimate based on an average of the quantile differences. This esti-
mator is obtained by first estimating F0(·), f0(·), and f ′0(·), substituting that for F(·), f (·), and f ′(·) 
into wf (u) in equation (2.12), followed by using this estimated set of weights in equation 
(2.13), leading to 

τ̂waq = ∫10 (F̂−1
1 (u) − F̂−1

0 (u))ŵf (u) du. (2.16) 

Formally, we would use the same sample splitting as above. Details are in Algorithm 2 and the  
online supplementary material. 

Algorithm 1 Influence Function-Based Estimator τ̂if 

01: ⊲ Input: 

02: n1 treated observations Y1
1 , . . . , Y(1)

n1 

03: n0 control observations Y0
1 , . . . , Y(0)

n0 

04: 

05: ⊲ Randomly split sample into halves A and B: 

06: n1(A) = ⌈n1/2⌉, n1(B) = ⌊n1/2⌋, n0(A) = ⌈n0/2⌉, n0(B) = ⌊n0/2⌋

07: denote treated in halves A and B by Y(1,A)
1 , . . . , Y(1,A)

n1(A) 
and Y(1,B)

1 , . . . , Y(1,B)
n1(B) 

08: denote control in halves A and B by Y(0,A)
1 , . . . , Y(0,A)

n0(A) 
and Y(0,B)

1 , . . . , Y(0,B)
n0(B) 

09: 

10: ⊲ Calculate a preliminary consistent estimator: 

11: τ̃(B) = median(Y(1,B)
i ) − median(Y(0,B)

i ) 

12: 

13: ⊲ Estimate density and its derivatives: 

14: f̂0(B)(·), f̂ ′0(B)(·), f̂
′′
0(B)(·)← estimated using data Y(0,B)

1 , . . . , Y(0,B)
n0(B) 

15: 

16: ⊲ Estimate the Fisher information I: 

17: Î(B) ← − 1
n0(B)

􏽐n0(B)

i=1
f̂0(B) (Y

(0,B)
i )f̂ ′′0(B) (Y

(0,B)
i )−f̂ ′0(B) (Y

(0,B)
i )2

f̂0(B) (Y
(0,B)
i )2 

18: 

19: ⊲ Estimate the effects: 

20: τ̂(A) ← τ̃(B) + 1
n1(A)

􏽐n1(A)

i=1
−1

pÎ(B)

f̂ ′0(B) (Y
(1,A)
i −τ̃(B) )

f̂0(B) (Y
(1,A)
i −τ̃(B) )

− 1
n0(A)

􏽐n0(A)

i=1
−1

(1−p)Î(B)

f̂ ′0(B) (Y
(0,A)
i )

f̂0(B) (Y
(0,A)
i ) 

21: 

22: ⊲ Repeat lines 10 through 20 reversing A and B, then average: 

23: τ̂if ← (τ̂(A) + τ̂(B))/2   

J R Stat Soc Series B: Statistical Methodology                                                                                           7 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad072/7226451 by D
uke U

niversity user on 22 August 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad072#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad072#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad072#supplementary-data


Formally, we have for the unknown f (·) case: 

Theorem 1 For all f such that f ′ exists and 0 < I(f ) < ∞:  

(i) There exist a 
��
n
√

-consistent estimator τ̂.  
(ii) Under mild conditions (see equations (A.9) and (A.10) in the online 

supplementary appendix), we can construct an M estimate τ̂if such that 

��
n
√

(τ̂if − τ)⇒
d
N 0,

1
p(1 − p)I(f )

􏼒 􏼓

. (2.17)   

(iii) Under mild conditions (see Lemma A.2 in the online supplementary 
appendix), we can construct an L estimate τ̂waq (weighted average quan-
tile) such that τ̂waq also satisfies equation (2.17). 

The main insight is that the asymptotic variance for the proposed estimator is the same as the 
variance for the maximum likelihood estimator in the case where F0 is known up to a shift. 
Our conditions are not optimal (see Stone, 1975 for minimal ones in the one-sample case). The 
��
n
√

-consistent estimator for τ can be based on any quantile treatment effect estimator. 
Thus, both the estimators ̂τwaq and ̂τif are adaptive to models in which the distribution of control 

and treated potential outcomes is known up to location. Theorem 1 implies that the influence 
function-based estimator is as efficient as the maximum likelihood estimator based on the true dis-
tribution function. For instance, if potential outcomes are normally distributed, the maximum 

Algorithm 2 Weighted Average Quantile Estimator τ̂waq 

01: ⊲ Input: 

02: n1 treated observations Y1
1 , . . . , Y(1)

n1 

03: n0 control observations Y0
1 , . . . , Y(0)

n0 

04: 

05: ⊲ Randomly split sample into halves A and B: 

06: n1(A) = ⌈n1/2⌉, n1(B) = ⌊n1/2⌋, n0(A) = ⌈n0/2⌉, n0(B) = ⌊n0/2⌋

07: denote treated in halves A and B by Y(1,A)
1 , . . . , Y(1,A)

n1(A) 
and Y(1,B)

1 , . . . , Y(1,B)
n1(B) 

08: denote control in halves A and B by Y(0,A)
1 , . . . , Y(0,A)

n0(A) 
and Y(0,B)

1 , . . . , Y(0,B)
n0(B) 

09: 

10: ⊲ Estimate density and its derivatives: 

11: f̂0(B)(·), f̂ ′0(B)(·), f̂
′′
0(B)(·)← estimated using data Y(0,B)

1 , . . . , Y(0,B)
n0(B) 

12: 

13: ⊲ Order and pair observations: 

14: n(A) = max (n1(A), n0(A)) 

15: duplicate treated or control observations as needed such that there are n(A) of both,  
evenly across the distribution, and order them (analogously for the B split): 

16: Y(0,A)
(1) ≤ Y(0,A)

(2) ≤ · · · ≤ Y(0,A)
(n(A) )

; Y(1,A)
(1) ≤ Y(1,A)

(2) ≤ · · · ≤ Y(1,A)
(n(A) ) 

17: Y(0,B)
(1) ≤ Y(0,B)

(2) ≤ · · · ≤ Y(0,B)
(n(B) )

; Y(1,A)
(1) ≤ Y(1,B)

(2) ≤ · · · ≤ Y(1,B)
(n(B) ) 

18: 

19: ⊲ Estimate the weighted average quantile effect: 

20: weights: w(B)
(i) ← −

f̂0(B) (Y
(0,B)
(i) )f̂ ′′0(B) (Y

(0,B)
(i) )−f̂ ′0(B) (Y

(0,B)
(i) )2

f̂0(B) (Y
(0,B)
(i) )2 

21: τ̂(A) ←
􏽐n(A)

i=1 w(B)
(i) (Y(1,A)

(i) − Y(0,A)
(i) )/

􏽐n(A)

i=1 w(B)
(i) 

22: 

23: ⊲ Repeat lines 10 through 21 reversing A and B, then average: 

24: τ̂waq ← (τ̂(A) + τ̂(B))/2   
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likelihood estimator is the difference in means, and the influence function estimator has the same 
limiting distribution. If, however, the potential outcomes follow a Double Exponential distribu-
tion, the difference in medians is the efficient estimator. Under this distribution, the influence 
function-based estimator adapts and has the same limiting distribution as the difference in me-
dians. For the Cauchy distribution the optimal weights are more complicated, 
wf (u) ∝ − cos (2πu) sin (πu)2, but the influence function-based estimator has the same limiting dis-
tribution, without requiring a priori knowledge about the distribution. This influence function- 
based estimator τ̂if is a special case of the estimator developed by Cuzick (1992a, 1992b) for 
the partial linear regression model setting. 

Although these estimators are efficient under the constant additive treatment model, as we shall 
see in Section 3, if the the constant quantile treatment effect assumption is violated, estimates of 
the types derived from f known continue to estimate at rate n−1/2, meaningful measures of the 
treatment effect as discussed in Section 2.1. This is unfortunately not the case for τ̂if and τ̂waq be-
cause estimation of f ′ and f ′′ introduces components of variance of order larger than n−1/2. 
However, there is a partial remedy, that we discuss next. 

2.6 Partial adaptation 
An interesting alternative to fully adaptative estimation in the closely related one-sample symmet-
ric case was studied by Jaeckel (1971b). See also Yu and Yao (2017). The estimator proposed by  
Jaeckel (1971b) is 

μ̂α ≡
1

1 − 2α
∫1−α
α F̂−1(u) du 

for a sample from F(x − μ) with f symmetric. We can interpret this as restricting the class of weight 
functions to one indexed by a scalar parameter α: 

wα(u) =
1

1 − 2α
if α ≤ u ≤ 1 − α

0 otherwise.

⎧
⎨

⎩

This weight function yields the α-trimmed mean. We can then choose the value of α that minimises 
the asymptotic variance of μ̂α. This asymptotic variance is equal to 

σ2
α ≡

1

n(1 − 2α)2 (E(X − μ)21(F−1(α) ≤ X ≤ F−1(1 − α))

+ α · (F−1(1 − α) − μ)2 + α(F−1(α) − μ)2), 

with 

μ = ∫1−α
α F−1(u) du + α(F−1(α) + F−1(1 − α)), 

which can be estimated by replacing F with the empirical distribution, denoted as σ̂2
α. Let 

α̂ = arg minασ̂2
α, and let μ̂α̂ be the corresponding estimator for μ. Jaeckel (1971b) shows that μ̂α̂ 

is adaptive for estimating μ over a Huber family of densities. In the Huber family (X − μ)/σ has 
density f for varying μ, σ > 0: 

log f (x) =
−

x2

2
− c(k), if |x| ≤ k

−
k|x|

2
− c(k), if |x| > k,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
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where c(k) makes ∫ f (x) dx = 1 and k = −F−1(α). Adaptivity here means that using the trimming 
proportion optimising the variance estimate, in fact yields an estimate which is efficient for the 
member of the Huber family generating the data. He optimises 0 < α0 ≤ α ≤ α1 < 1

2. 
Because this family includes among others the Gaussian (k→∞) and double exponential 

(k = 0), this family is very flexible. For more properties, see Huber (2011). 
In the two-sample case, it is reasonable to consider asymmetric weight functions leading to the 

natural generalisation, 

τ̂α,β =
1

1 − (α + β)
∫1−β
α (F̂−1

1 (u) − F̂−1
0 (u)) du. (2.18) 

This estimator is partially adaptive, in a similar way to the symmetric trimmed mean in the one 
sample problem. In the online supplementary appendix, we extend Jaeckel’s result on partial adap-
tation for our two-sample problem to a generalisation of the Huber family whose members are 
symmetric iff k1 = k2, defined by (X − μ)/σ ∼ f : 

log f (x) =

−
x2

2
− c(k1, k2), if − k1 ≤ x ≤ k2,

k1x
2

− c(k1, k2), if x < −k1,

−
k2x
2

− c(k1, k2), if x > k2,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2.19) 

where c(k1, k2) ≡ log (2( e−k1/2

k1
+ e−k2/2

k2
) +

���
2π
√

(Φ(k2) − Φ( − k1))) and Φ is the cumulative distribu-
tion function of N (0, 1). See Figure 1 for illustration. This family can be equivalently parametrised 
by F( − k1) and F(k2). f (·) is symmetric if k1 = k2. 

In the online supplementary material, we also discuss how inference can proceed in this setting. 

3 The general parametric treatment effect case 
In some settings, the assumption of an additive model may be too restrictive. In this section, we 
develop estimators given a general parametric model for this difference. 

The starting point is a model governing the relation between the two potential outcomes: 

Assumption 1 (Parametric model quantile treatment effects). The potential outcome dis-
tributions satisfy 

F1(h(y, θ)) = F0(y).

The constant quantile treatment effect case is a special case of this with h(y, θ) = y + θ. Another 
important special case is the proportional treatment effect case, h(y, θ) = θy. For the general case, 
the waq estimator does not directly generalise, so we focus on the influence function-based estima-
tor. For the general case the influence function is more complex. 

This approach of modelling treatment effects has connections to the literature on structural 
nested models, which also imposes modelling restrictions on treatment effects, although for differ-
ent reasons, largely based on the challenges in dynamic settings. See Robins (1986) for an early 
paper, and Vansteelandt and Joffe (2014) for a review. 

As before, we initially assume F0 known. In terms of the quantile treatment effects τ(u) 
Assumption 1 implies the restriction 

τ(u) = F−1
1 (u) − F−1

0 (u) = h(F−1
0 (u), θ) − F−1

0 (u).
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Given Assumption 1, the population average treatment effect can be characterised as 

τpop = ∫10 (h(F−1
0 (u), θ) − F−1

0 (u)) du.

In practice, however, estimating τpop may still be subject to substantial sampling variance, even if 
h(·) is known. For example, suppose that h(y, θ) = θy, so that the treatment effect is proportional. 
The average treatment effect is then θE[Yi ∣ Zi = 0]. Even if θ is known, estimating the population 
mean E[Yi ∣ Zi = 0] could lead to a large standard error. As an alternative, we therefore focus on a 
different estimand. Specifically, we suggest to estimate the in-sample, as opposed to population, 
average treatment effect. This is still a well-defined average causal effect that is useful for decision 
makers. It is in the spirit of the typical analysis of randomised experiments based on convenience 
samples where the focus is on the average effect for the particular sample. A key insight is that es-
timators of this object can have a much lower variance. We define the in-sample average treatment 
effect as 

τis =
1
N

􏽘N

i=1

(
Yi(1) − Yi(0)

􏼁
=

1
N

􏽘N

i=1

􏼚

Zi(Yi − h−1(Yi, θ)) + (1 − Zi)(h(Yi, θ) − Yi)
􏼛

. (3.1) 

When h is not just an additive function, τis is sample-dependent, and thus stochastic. In particular, 
when the variance of Yi is large because of thick tails for the potential outcome distributions, the 
variance of τis over repeated samples can be large, too. To give some intuition for this, suppose that 
θ is known. Then the variance of τ̂ − τis is zero, but the variance of τis − τpop over repeated samples 
can be large. We therefore focus on the variance of estimators ̂τ relative to τis for the particular sam-
ple at hand, rather than on the variance of τ̂ relative to the population average τpop. 

If F0 was known, we could estimate θ efficiently by some version of maximum likelihood to get 
an estimate θ̂ and 

τ̂ = ∫10 h(F−1
0 (y), θ̂) − F−1

0 (y)
( 􏼁

dy 

as an estimate of τ. The density of Y given Z is 

f (y ∣z) = f0(y)
( 􏼁1−z f1(y, θ)

( 􏼁z
.

By Assumption 1 

f1(y, θ) = f0(h−1(y, θ))
∂h−1(y, θ)

∂y
(3.2) 

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

Figure 1. Example members of the generalised Huber family of distributions.   

J R Stat Soc Series B: Statistical Methodology                                                                                         11 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad072/7226451 by D
uke U

niversity user on 22 August 2023



and the score function is 

ℓ̇(y, z, θ) ≡ z ·
∂
∂θ

log f1(y, θ) 

yielding, 

θ̂ = θ +
1
n

􏽘n

i=1

I−1ℓ̇(Yi, Zi, θ) + oP(n−1/2), 

where I = E(ℓ̇(Y, Z, θ))2. 
If F0 is assumed unknown, to obtain an efficient influence function (eif) we must  

1. Compute the tangent plane as f0 varies with θ fixed. The tangent plane is 

Ṗf = u(Y, Z) = (1 − Z)v(Y, θ) + Zv(h−1(Y, θ), θ) :
􏼈

∫ v2(y, θ)f0(y) dy < ∞, ∫ v(y, θ)f0(y) dy = 0
􏼉
.

(Note that both factors of the likelihood must be varied treating θ as fixed.)  
2. Project ℓ̇ on the orthocomplement of the tangent plane to get 

ℓ̇
∗
(Y, Z, θ) = ℓ̇(Y, Z, θ) − (ZQ(h−1(Y, θ), θ) + (1 − Z)Q(Y, θ)), 

where ZQ(h−1(Y, θ), θ) + (1 − Z)Q(Y, θ) is the projection of ℓ̇ on Ṗf .  
3. The eif is given by 

ψ(Y, Z, θ) =
ℓ̇
∗
(Y, Z, θ)

E ℓ̇
∗
(Y, Z, θ)

( 􏼁2
.

Lemma 1 The eif for θ is 

ψ f0
(y, z, θ) = I−1 z

p
· g(y, θ) −

1 − z
1 − p

· g(h(y, θ), θ)
􏼚 􏼛

, 

where 

g(y, θ) =
∂
∂θ

log f1(y, θ) =
∂
∂θ

log f0(h−1(y, θ)) ·
∂h−1(y, θ)

∂y

􏼒 􏼓

and 

I = ∫ g2(h(y, θ), θ)f0(y) dy.

To use the influence function approach, we need a 
��
n
√

-consistent initial estimator θ̃. We can do 
so by a fixed number of quantiles, u1, . . . , ud, where d is the dimension of θ, and find the θ that 
solves 

F̂−1
1 (u) = h(F̂−1

0 (u), θ),  
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for u = u1, . . . , ud. For simplicity, we suggest using evenly-spaced quantiles, u = 1
1+d , 

2
1+d , . . . , d

1+d. Let θ̃ denote the solution to this system of equations. Then: 

Theorem 2 Under mild conditions on the estimation of density and its derivative, the es-

timator θ̂ if below is efficient for θ, i.e. 
��
n
√

(θ̂ − θ)⇒
d
N (0, 1

p(1−p) I−1): 

θ̂ if ≡ θ̃ +
1
n

􏽘n/2

i=1

ψf̂0(2)
(Yi, Zi; θ̃) +

􏽘n

i=1+n/2

ψf̂0(1)
(Yi, Zi; θ̃)

􏼨 􏼩

, 

where f̂0(1) is the estimate of f0 using {(Yi, Zi) : 1 ≤ i ≤ n
2} and f̂0(2) is the esti-

mate of f0 using {(Yi, Zi) : n
2 < i ≤ n}, again a one-step estimate using the sam-

ple splitting technique (Klaassen, 1987), similar to equation (2.15). 

Note that, unlike the constant treatment effect setting, the eif is not necessarily the one corre-
sponding to F0 known. 

Given inference for θ̂, inference for τ̂ as an estimator of the in-sample average treatment effect is 
straightforward based on the Delta method and the representation in equation (3.1), taken as giv-
en the potential outcomes. The asymptotic variance for τ̂ is equal to the variance for θ̂, pre- and 
post-multiplied by the derivative of the expression in equation (3.1) with respect to θ.

4 Simulations 
We evaluate the performance of the proposed estimators and conventional estimators in a Monte 
Carlo study. Throughout most of these simulations, the true unit-level treatment effects are all 
zero. We estimate the treatment effect using the proposed efficient estimators based on an additive 
model. We consider seven estimators: The (standard) difference in means, the difference in me-
dians, the Hodges–Lehman (1963) estimator,1 the adaptively trimmed mean, the adaptively win-
sorised mean,2 the estimator based on the eif, and the waq estimator. For the latter two we report 
only results without sample splitting. Results for the case with sample splitting are very similar and 
are available in the online supplementary material. Although in our illustrations we use relatively 
simple estimators for the densities and their derivatives based on variable bandwidth kernels, an 
alternative would be to use methods directy aimed at estimating derivatives of the logarithm of the 
density as in Pinkse and Schurter (2023). Detailed descriptions of how the new estimators are im-
plemented, as well as Matlab code implementing all estimators with performance optimisations 
for these simulations, are available in the online supplementary material.3 We present results 
for three sets of simulations, one with a range of known distributions for the potential outcomes, 
so we can directly assess the ability of the proposed methods to adapt to different distributions, 
and two with simulations based on real data: one based on housing prices and one based on med-
ical expenditures, both with thick-tailed distribution. 

4.1 Simulations with known distributions 
We simulate samples of n = 20,000 observations, half of which are treated, and report summary 
statistics based on 10,001 simulated samples (using an odd number so that the median is unique). 
We repeat the simulation study for standardised Normal, Double Exponential (Laplace), and 
Cauchy distributions for the potential outcomes. The difference in means is the maximum 

1 The Hodges–Lehmann estimator is equal to the median of all pairwise differences between treated and control 
observations. 

2 We apply the ideas of Jaeckel (1971b) for the optimal trimmed mean to choose the parameters for the estimators in 
Section 2.6, see Theorem A.3 in the online supplementary appendix. We allow anywhere between no trimming (differ-
ence in means) and the extreme of trimming all but the medians (difference in medians). While including the extremes is 
not covered by the theory, this approach appeared to work best in our simulations. 

3 The fully documented R package is available at https://github.com/michaelpollmann/parTreat. Details on the em-
pirical implementation of our estimators are in the online supplementary material. For a sample of 1,000 treated and 
1,000 control observations, the R package computes estimates and standard errors practically instantaneously. With 
very large samples, the derivatives of the log density can be precomputed on a random sub-sample of the data for similarly 
fast computation.  
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likelihood estimator for Normally distributed data, and so will do well there, but may perform 
poorly for thicker tailed distributions such as the Double Exponential distribution and in particu-
lar the Cauchy distribution. The difference in medians is the maximum likelihood estimator for the 
Double Exponential distribution, and relatively robust to thick tails and outliers, and so is ex-
pected to perform reasonably well across all specifications, but not as well as the efficient estima-
tors for the Normal. 

For the simulations with known distributions, we can derive the functional form for the optimal 
weights for the quantile-based estimator. The optimal weights for the waq estimator are propor-
tional to the (estimated) second derivative of the log density. For the Normal distribution, 
∂2lnf
∂y2 (y) = − 1

σ2, implying the optimal weights are constant. The density of the Double 
Exponential distribution is such that the optimal weights asymptotically place all weight close 
to the median. For the standard Cauchy distribution the efficient weights w on the difference in u ∈ 
(0, 1) quantiles of treated and control distributions are wf (u) ∝ − cos (2πu) sin (πu)2, shown in  
Figure 2. Most of the weight is concentrated around the median, with strictly negative weights out-
side the [0.25, 0.75] quantile range. 

The efficient estimators perform well across distributions, and confidence intervals based either 
on estimates of the analytic variance formulas or on the bootstrap achieve their nominal coverage 
levels, as shown in Table 1. Their standard deviations are close to the theoretical efficiency bound, 
as shown in column 4, labelled relative efficiency, where values larger than one imply standard de-
viations of the estimator in excess of the efficiency bound. The eif and waq estimators are close to 
the most efficient estimator for the Normal, Double Exponential, and Cauchy distributions. The 
last columns show that the confidence intervals are close to their nominal coverage for each dis-
tribution. For computational convenience in the simulations, the confidence intervals based on 
the bootstrap variance use the m-out-of-n bootstrap (Bickel et al., 2012), with m = 2,000 (half 
treated, half control), to estimate the variance of the estimators. Even with these smaller sample 
sizes, the density estimates calculated within each bootstrap sample appear to be sufficiently 
good to yield reasonable confidence intervals for the estimators. 

4.2 Simulations with house price data 
In the second set of simulations, we use house price data from the replication files of Linden and 
Rockoff (2008) available at Linden and Rockoff (2019). They obtained property sales data for 
Mecklenburg County, North Carolina, between January 1994 and December 2004. They dropped 
sales below $5,000 and above $1,000,000, such that 170,239 observations remain, which we take 
as our population of interest. Despite the trimming the distribution is noticeably skewed (skewness 
2.2) and thick tailed (kurtosis 9.5). Even after taking logs, the distribution is heavy-tailed with kur-
tosis equal to 5.1. Figure 3 plots a histogram for house prices, both in levels and in logs, along with 
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Figure 2. The efficient weight function for the Cauchy distribution. The weights, normalised to have mean 1, are 
plotted against the quantile (left) and against the value of the observations (right). For the figure on the right, we only 
plot the range from −10 to 10, which corresponds to approximately the 0.03–0.97 quantile. At this point, the weight 
is approximately −0.04, and weights for more extreme quantiles are closer to 0.   
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the estimated optimal weights (minus the second derivative of the log density) based on all 170,239 
observations. 

We base simulations on this data by drawing samples of size n = 20,000, and randomly assign-
ing exactly half of each sample to the treatment group and the remaining half to the control group, 
with a zero treatment effect. Within each sample, observations are drawn from the population 
without replacement, but sampling is independent across samples, such that observations may ap-
pear in multiple samples. We estimate the efficiency bound using density estimates based on all ob-
servations. We compute the same estimators as in the simulations of the previous section, with a 
small adjustment to the adaptively trimmed and winsorised means where we fix the trimming and 
winsorising percentiles on the left to 0% (no trimming/winsorising), and only adaptively choose 
the threshold on the right. 

Table 2 summarises the simulation results based on 10,001 simulated samples. When the house 
prices are in levels, the standard deviation of the difference in means estimator is twice as large as 
that of efficient estimators. For the difference in medians and the Hodges–Lehmann estimators, 
which are less affected by outliers in the data, the standard deviation is larger by approximately 
30% and 20%, respectively. Confidence intervals, based on estimated variances and asymptotic 
normal approximations, have close to nominal coverage throughout, and are meaningfully shorter 
for the efficient estimators we propose. 

In Figure 4, we show the root mean squared error and coverage of 95% confidence intervals 
both relative to the average treatment effect under deviations from the constant treatment effect 
model.4 In the top panel, the unit-level treatment effects are independent draws from a normal dis-
tribution with mean equal to 0.1 standard deviations of the (population) standard deviation of the 
potential outcomes in the absence of treatment. On the horizontal axis, we vary the standard de-
viation of the normal distribution as a fraction q of the (population) standard deviation of the con-
trol potential outcomes, simulating 10,001 samples for each value. When q > 0, the constant 
treatment effect model is misspecified. In the bottom panel, the unit-level treatment effects are 0 
with probability q and t with probability 1 − q, where t is chosen as a function of q such that 
the average treatment effect is constant across all simulations and the same as in the top panel. 
The difference in means estimator is unbiased for the average treatment effect regardless of the val-
ue of q, so its large root mean squared error is due to its variance. In both panels, the influence 
function-based and waq estimators are only (asymptotically) unbiased for the average treatment 
effect when q = 0. 

We also estimate a proportional treatment effect (multiplicative) model and translate the esti-
mated coefficients into level effects. Under the multiplicative model, Yi(1) = θYi(0). When 
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Figure 3. Histogram of house prices, in levels and logs, as well as estimated optimal weights (minus the second 
derivative of the log density) based on all 170,239 observations. The weights are normalised to be mean 1 
(thick horizontal line). Some weights are below 0 (thin horizontal line). Vertical lines indicate the 0.0001, 0.001, 0.01, 
0.1, 0.9, 0.99, 0.999, 0.9999 quantiles.  

4 The design of these simulations was kindly suggested by one of the referees.  
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outcomes are strictly positive, this is identical to an additive model for log outcomes; 
log (Yi(1)) = log (θ) + log (Yi(0)). Given an estimate τ̂log of the additive model with the outcome 
in logs, the estimate of the level treatment effect is then 

τ̂ =
1
n

􏽘n

i=1

(1 − Zi) ( exp (τ̂log) − 1)Yi
( 􏼁

+ Zi (1 − exp ( − τ̂log))Yi
( 􏼁

􏼠 􏼡

.

For estimates of the in-sample treatment effect, we therefore apply estimates ̂τlog to a population of 
interest with known means μY0 

and μY1 
and fixed treatment probability p as 

τ̂ = (1 − p)(( exp (τ̂log) − 1)μY0
) + p((1 − exp ( − τ̂log))μY1

).

Using the Delta method, if V is the asymptotic variance of τ̂log, then the asymptotic variance of τ̂, 
holding μY0

, μY1
, and p fixed, is 

(1 − p) exp (τlog)μY0
+ p exp ( − τlog)μY1

( 􏼁2V 

which we estimate by replacing τlog with τ̂log and V by the estimate of the variance, V̂. For the pur-
pose of these simulations, we set μY0

= μY1 
equal to the population mean of house prices, and 

p = 1/2. 
When treatment effects are assumed to be proportional to potential outcomes, the proposed es-

timators for this multiplicative model are still more efficient than alternative estimators, but the 
gains are smaller. The middle panel of Table 2 shows the quality of estimates of the multiplicative 
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Figure 4. Root mean squared error and coverage of 95% confidence intervals relative to the average treatment 
effect (fixed at 0.1 standard deviations of the outcome in the absence of treatment) in simulations with 
heterogeneous treatment effects in the house price data. The horizontal axis varies the amount of heterogeneity. 
When q = 0, there is no heterogeneity such that the constant additive treatment effect model is correctly specified.   

18                                                                                                                                                    Athey et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad072/7226451 by D
uke U

niversity user on 22 August 2023



parameter obtained by transforming outcomes into logs, log (θ). As can be seen in Figure 3, the 
distribution of log house prices appears closer to the normal distribution with fewer ‘outliers’. 
Consequently, the difference in means estimator, which is efficient for the normal distribution, 
comes noticeably closer to the efficiency bound than when outcomes are in levels. Nevertheless, 
the efficient estimators further reduce the variance. The bottom panel of Table 2 shows the 
same summary statistics when the multiplicative parameter is translated back into a level effect. 
The efficient estimators of the multiplicative parameter lead to treatment effects with smaller vari-
ance and shorter confidence intervals than the difference in means, irrespective of whether the lat-
ter is estimated in levels (top panel) or in logs and then translated into levels (bottom panel). 

4.3 Medical expenditures data 
Next, we present simulation results based on confidential medical expenditure data from the IBM 
MarketScan Research Database, following the sample construction of Koenecke et al. (2021, 
Figure 2). We restrict the sample to males, age 45–64, with pneumonia inpatient diagnosis and 
at least 1 year of continuous medical enrolment. For each patient, we consider the first inpatient 
admission only to abstract away from any dynamics. We focus on medical expenditure as the out-
come variable. For each patient, we sum the payments recorded by MarketScan for this admission. 
In total, we use data on 103,662 admissions.5 Figure 5 plots a histogram for medical expenditure 
in levels and in logs along with the estimated optimal weights (minus the second derivative of the 
log density). We also observe a treatment variable in this data set, the (prior) use of alpha blockers, 
which Koenecke et al. (2021) find may improve health outcomes during respiratory distress by pre-
venting hyperinflammation. 

We design a simulation study similar to those of the previous sections, treating the receipt of 
alpha blockers as randomly assigned in our population. This allows us to study (coverage) prop-
erties of the estimators and inference procedures in settings where the parametric treatment effect 
model is not (necessarily) correctly specified. For these simulations, each sample is a draw, without 
replacement, of 200 of the 5,507 observations in the treatment group and 3,565 of the 98,155 ob-
servations in the control group. While the control group is smaller than in our other simulations, it 
remains sufficiently large to estimate the density and its derivatives required for our estimators. In 
this simulation design, F0 is given by the empirical distribution of the control group, and F1 is given 
by the empirical distribution of the treatment group, of the full sample. Although it is not neces-
sarily correct, the additive treatment effect model may offer a reasonable approximation, and we 
are interested in the performance of inference methods when the conditions for our theoretical 
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Figure 5. Histogram of medical expenditures per admission, in levels and logs, as well as estimated optimal 
weights (minus the second derivative of the log density) based on the 98,155 observations in the control group. For 
the figure in levels, vertical lines indicate the 0.001, 0.01, 0.1, and 0.9 quantiles; the figure is limited to below 
$200,000, such that the 0.99 and higher quantiles do not appear. For the figure in logs, vertical lines indicate the 
0.001, 0.01, 0.1, 0.99, 0.999, 0.9999 quantiles. The weights are normalised to be mean 1 (black horizontal line). 
Some weights are below 0 (blue horizontal line).  

5 The sample size differs slightly from that reported by Koenecke et al. (2021) due to missing expenditure data for a 
small number of admissions.  
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results are not (quite) met in this particular application. The simulation results reported in Table 3, 
for the same estimators as in Section 4.2, suggest that the proposed estimators perform reasonably 
well in this setting despite mis-specification. 

5 Conclusion 
In many modern settings where randomised experiments are used to estimate treatment effects, the 
presence of heavy-tailed distributions can lead to larger standard errors. Often researchers use 
winsorising with ad hoc thresholds to address this. Here, we develop systematic methods for ob-
taining more precise inferences using parametric models for the treatment effects, while avoiding 
the specification of models for the potential outcomes. We present results for semi-parametric ef-
fiency bounds, suggest efficient estimators, and show in simulations that these methods can be ef-
fective in realistic settings. 

In particular, we recommend the semi-parametrically efficient estimator under the constant 
additive treatment effect model. Although one may not think the constant additive treatment effect 
assumption holds exactly, the fact that the estimator can be interpreted as estimating a weighted 
average of the quantile treatment effects make this an attractive choice. 

In this discussion, we do not incorporate covariates or pre-treatment variables. One could com-
bine the ideas exposited in the current paper with models for the control potential outcome. One 
may also wish to incorporate covariates in the model for the quantile treatment effects and thus 
allow for heterogenous treatment effects, e.g. Chen and Au (2022) and Wager and Athey 
(2018). Another interesting avenue is to consider alternative estimators for the current model 
by first estimating the unrestricted quantile functions, followed by minimum distance methods, 
as in L. Alvarez (2022) and L. A. Alvarez and Biderman (2022). 
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