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1 Examples of papers studying spatial treatments

Table OA1 lists examples of papers studying spatial treatments. The outcomes or outcomes units mentioned
in the table are either directly studied in each paper or are closely related to the question studied. The
list is meant to help the reader map empirical objects into the framework of this paper and to illustrate
the breadth of topics involving spatial treatments. Not all of these papers had precise location data on
treatments and/or outcome units, but such data could in principle be collected in all instances. Dell and
Olken (2020) is the only example on this list explicitly considering counterfactual treatment locations.1 The
theory in the present paper derives standard errors complementing the p-values of randomization tests of
the sharp null reported in the original paper.

Table OA1: Examples of papers studying spatial treatments, and outcomes or outcomes units that are either
directly studied in each paper or are closely related to the question studied.

paper spatial treatment outcome / outcome units

Aliprantis and Hartley (2015) public housing demolition crime in local neighborhoods
Athey et al. (2018) restaurant opening utility of consumers
Buchmueller et al. (2006) hospital closure mortality of residents
Cohen and Dupas (2010) subsidized bed nets sold at hospitals adoption of bed nets in local communities
Currie et al. (2015) toxic plant opening and closing house prices, infant health
Dell and Olken (2020) site of historic sugar mill economic development of nearby towns
Diamond and McQuade (2019) low income housing projects house prices
Di Tella and Schargrodsky (2004) police presence in city blocks number of car thefts
Duflo (2001) school construction educational attainment in nearby villages
Ellickson and Grieco (2013) Wal-Mart entry entry, exit of competitors
Feyrer et al. (2017) fracking site income of local residents
Greenstone and Moretti (2003) large manufacturing plant entry property values, labor earnings of residents
Greenstone et al. (2010) large manufacturing plant entry TFP of other plants
Jia (2008) Wal-Mart entry profit/exit of small discount stores
Keiser and Shapiro (2019) wastewater treatment plants commercial & recreational value of rivers
Linden and Rockoff (2008) sex offenders moving in house prices
Miguel and Kremer (2004) deworming administered at schools worm prevalence in local population
Oates (1969) (spending on) local public goods property values
Seim (2006) video store entry effect on local competitors
Siegfried and Zimbalist (2000) sport stadiums local businesses, property values
Stock (1991) toxic waste cleanup property values

1There are other empirical studies considering counterfactual treatment locations, but to the best of my knowledge none
include statistical theory allowing design-based inference.
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2 Setup and training of neural networks for finding counterfactual
locations

The implementation of estimation based on the unconfoundedness assumption proposed here relies on es-
timates of the probability of treatment at any location in a region conditional on all the features of the
region. The probability of treatment across space resembles the spatial distribution of treatment locations
Sj ∼ G(Zj), where Zj are the characteristics of region j, potentially relative locations of all individuals in the

region as well as moments of their covariates. One could then use the estimated Ĝ to inform the treatment
probabilities at each point in the region as inputs in the estimators proposed in this paper.

In practice, it is typically sufficient to find a finite number of candidate treatment locations that offer
a plausible counterfactual to the realized treatment locations. With a continuous distribution across space,
a simple approximation of the assignment process such as independent assignment can lead to unrealistic
assignments that are considered in computing standard errors. More complex assignment processes for
continuous distributions may instead be analytically intractable. In addition, computationally, it is often
impractical to use a continuous distribution G because the weight of individual i when estimating effects at
distance d would depend on the integral of the noisy Ĝ along a ring with radius d around her location, ri,
for each of the typically many individuals i ∈ I. Instead, I recommend finding a finite number of candidate
locations. The average across these finitely many candidate locations approximates the strategy based on
the complete distribution G, setting Ĝ to exactly zero for many of the implausible locations.

I propose taking draws Sj ∼ G(Zj) to obtain candidate treatment locations, where G(Zj) is estimated
implicitly. Perhaps surprisingly, recent machine learning methods achieve good results at this task, despite
the difficulty of estimating G itself. Specifically, I recommend a formulation similar to generative adversarial
networks (Goodfellow et al., 2014); see Liang (2018) and Singh et al. (2018) on the relationship between
generative adversarial networks and density estimation. Most closely related to this paper, Athey et al. (2019)
use generative adversarial networks to draw artificial observations from the distribution that generated the
(real) sample, for use in Monte Carlo simulations.

Generative adversarial methods for drawing Sj ∼ G(Zj) are based on iteration between two steps. First,

a generator generates draws S̃j ∼ G̃(Zj), where G̃ is an implicit estimate of the density maintained by the
generator in the current iteration. Second, a discriminator receives as input either counterfactual locations
proposed by the generator, S̃j | Zj , or real treatment locations, Sj | Zj , and guesses whether its input is real.
Both the generator and the discriminator are highly flexible models (typically neural networks) designed for
their given tasks. The discriminator is trained by taking (stochastic) gradient descent steps in the direction
that improves discrimination between real and counterfactual locations. The generator is trained by taking
(stochastic) gradient descent steps in the direction that leads to fooling the discriminator into classifying
counterfactual locations as real.

Effectively, the output of such models is a set of counterfactual candidate treatment locations S̃j | Zj that
are indistinguishable (to the discriminator) from real treatment locations Sj | Zj . With a sufficiently flexible

discriminator, the process is similar to matching.2 If a proposed candidate location S̃j is noticeably different

from all real treatment locations S, a flexible discriminator will learn to reject S̃j . In contrast, synthetic

control-type methods (cf. Abadie et al., 2010) would average multiple candidate locations, for instance, S̃a

and S̃b, to create a synthetic counterfactual for a real treatment location Sj . If S̃a and S̃b individually differ
from all real treatment locations S, the discriminator will reject them despite their average resembling Sj .

Intuitively, the goal is to find “false positives:” Occasions when the discriminator fails to reject a coun-
terfactual location suggested by the generator. Discriminator networks do not necessarily make binary
predictions but may give a continuous activation score that indicates how likely a location is to be real. In
practice, I recommend matching on the activation score, rather than taking all locations with high activation
scores because some real treatment locations may have low activation scores. Matching on the activation
score helps find suitable counterfactual locations resembling each real location. Such locations are likely to
be decent matches for the real treatment locations because they must share features of realized locations to
achieve these comparable activation scores.

I discuss how to tune generic machine learning methods to find suitable candidate treatment locations in

2Standard matching methods, however, are unlikely to perform well due to high dimensional covariates that describe spatial
data, such as relative spatial locations between many individuals as well as their characteristics.
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social science applications. I recommend four high-level implementation choices in adapting these methods.
First, the discretization of geographic space into a fine grid for tractability. Second, convolutional neural
networks capture the idea that spatial neighborhoods matter in a parsimonious way. Third, incorporating
the adversarial task of the discriminator into a classification task for the generator substantially simplifies
training. Fourth, data augmentation (rotation, mirroring, shifting) for settings where absolute locations and
orientation are irrelevant.

Discretization To tractably summarize the relative spatial locations of individuals and treatment loca-
tions, I recommend discretizing geographic space into a fine grid. Discretization provides an approximation
that is particularly tractable for the convolutional neural networks recommended below. In principle, future
improvements to, for instance, Capsule Neural Networks (Hinton et al., 2011) or other novel methods, may
replace convolutional neural networks as the preferred architecture and eliminate the need for discretization.

For each grid cell, one can include a count of individuals with residence in the cell, potentially separately
for individuals with different values of covariates, as well as average covariate values of the individuals in
the cell or other moments of their covariates. Based on the architecture of convolutional neural networks,
suggested below, it is typically not necessary to also pre-compute covariates describing the neighborhood of
each cell. The convolutional neural network can compute such neighborhood averages if they help predict
the outcome (here, whether a location is likely to be treated). If the grid is very fine, discretization retains
almost all meaningful information about relative locations. For instance, in the application of this paper,
each grid cell has size 0.025mi× 0.025mi (approximately 40m× 40m). The discretized grid creates a three-
dimensional array: The first two dimensions determine spatial location, and the third dimension enumerates
the different covariates that are summarized. Rather than taking the spatial dimensions to be entire regions,
I recommend using smaller (square) areas within a region such that the probability of treatment in the
approximate center of the area is plausibly only affected by individuals and covariates within the area.

Convolutional neural networks Convolutional neural networks have been particularly successful at
image recognition (Krizhevsky et al., 2012). In image recognition, the input is a 3D array: a 2D grid of
pixels, with a third dimension given by multiple RGB color channels. For spatial treatments, the input also
is a 3D array: the 2D spatial grid, with a third dimension given by the covariates as described above.

Convolutional steps in neural networks generally retain the shape of the 2D grid, but the value of each
neuron is a function of the covariates (or neurons) of the previous step not just at the same grid cell, but also
the covariates (or neurons) at neighboring grid cells. Figure OA1 illustrates this aspect of the convolution
operation. Importantly, convolutional layers average the neighborhoods of grid cells at any point in the grid
with the same weights. Reusing parameters across points in space makes convolutional layers substantially
more parsimonious than fully connected layers, and allows the neural network to capture neighborhood
patterns appearing in different parts of a region in a unified way.

In particular, I recommend using at least two convolutions with reasonably large spatial reach. Consider
the application in this paper, where grocery stores are spatial treatments and restaurants are outcome units
with foot traffic as the outcome variable. The first convolution allows each grid cell to see the covariates
of grid cells around it. In the application of this paper, the output of the first convolution for a particular
grid cell may be: “There are 3 grocery stores nearby, 4 competing restaurants very close, and 10 restaurants
within walking distance.” The second convolution then uses the information on such neighborhoods to
determine whether treatment is likely in a grid cell: “If there are many grid cells nearby (in all directions)
containing restaurants or grocery stores facing much competition, this location is probably in the center of a
shopping area and reasonably likely to contain another grocery store.” Intuitively, the first convolution may
measure what is important to the restaurants, while the second convolution translates how that is important
for the treatment location choice.

Adversarial Classification Generative adversarial networks (Goodfellow et al., 2014) are oftentimes dif-
ficult to train despite recent advances such as networks with Wasserstein-type criterion function (Arjovsky
and Bottou, 2017; Arjovsky et al., 2017). The difficulty arises because the training of the generator and
discriminator networks needs to be sufficiently balanced such that both improve. For instance, if the dis-
criminator early on becomes (close to) perfect at discriminating between the proposals of the generator
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Figure OA1: Convolutions in a neural network allow the prediction of a candidate location in a grid cell
to depend on the characteristics of neighboring grid cells (up to a user-specified distance). These models
remain parsimonious by requiring the same “neighborhood scan” to be performed for each grid cell.

and the real treatment locations, the gradient for the generator is relatively flat (little improvement in any
direction) and hence the generator fails to improve. Similarly, if the discriminator is insufficiently flexible,
even poor proposals by the generator may pass, such that the false positives are not necessarily similar to
the real treatment locations.

In contrast, convolutional neural networks for image classification are much easier to train, and, in this
case, can be adapted to the same task. Hence, I recommend setting up the problem of finding candidate
treatment locations as a classification task. Specifically, the convolutional neural network takes a 3D input
array and “classifies” it into, say, 101 categories, where categories correspond either to the 10 × 10 = 100
grid cells in the center of the input area, or an additional “no missing treatment location” category. The
distinction from other generation tasks is that here the set of possible outputs is relatively small, for instance,
the 101 categories described above. In contrast, in image generation, there are infinitely many possible images
that could be generated.

To retain the adversarial nature of the task, I propose simultaneously training the classification on three
sets of data and adding a final fully connected layer. The three sets of data are as follows: First, areas with
at least one real treatment location, but with one treatment location removed. The correct classification of
such input data is into the category corresponding to the grid cell where the treatment location was removed.
Second, areas with at least one real treatment location, but without any treatment location removed. The
correct classification of such input data is into the no missing treatment location category. Third, areas
without treatment locations. These areas are also correctly classified as not missing any treatment location.
The output of the convolutional layers is a prediction for each grid cell, of whether it is missing a treatment
location. A final fully connected layer combines the location-specific predictions into the categories mentioned
above: one category corresponding to each of the central grid cells, plus one category to no missing treatment
location.

This neural network architecture balances two tasks: a generative task of picking the correct location if
a treatment location is missing, predominantly performed by the convolutional layers; and a discriminatory
task of deciding whether a treatment location is missing at all, predominantly performed by the final fully
connected layer. This structure retains the attractive interpretation of generative adversarial networks but
is substantially easier to train. It also resembles denoising autoencoders (cf. Vincent et al., 2008), where the
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removal of a real treatment location represents noise added to the input, with the autoencoder trained to
remove the noise, here meaning to add the removed real treatment location. The idea of using the second
and third sets of training examples without missing treatment location has precedents in the literature on
adversarial examples and adversarial training (see Biggio et al., 2013; Szegedy et al., 2013).

The setup as an adversarial task, as well as the prediction of categories, additionally is beneficial because
it generates draws near the local modes rather than the mean of the treatment location distribution (cf.
Goodfellow, 2016; Lotter et al., 2016). The importance of sampling from the mode rather than the mean
of the location distribution becomes clear in a simple example. Suppose all areas contain three possible
locations in one-dimensional space: 1, 2, and 3. For instance, 2 may be the city center, while 1 and 3
are suburbs on either side of the city. In the data, if a region is treated, treatment always occurs in the
suburbs; at either location 1 or location 3, each with probability 0.5. However, estimating the likely location
of the treatment with the familiar mean squared error loss function will estimate the mean of the treatment
location distribution, predicting treatment at location 2. In contrast, the adversarial loss function as well as
loss functions used for classification tasks are minimized by predicting either 1 or 3 because these categories
are most likely to correspond to the correct location.3 In contrast, location 2 is rejected as a candidate
treatment location because treatment is never observed at such a location.

Data Augmentation Data augmentation serves two closely related purposes. First, rotating, mirror-
ing, and shifting input areas produces additional, albeit dependent, observations but preserves all relative
distances. Additional observations are helpful because training neural networks requires a large number of
training samples. Second, these transformations effectively regularize the parameters of the estimated model.
One can choose transformations that induce equivariance to rotation, mirroring, and shifts as appropriate
for the particular setting. For instance, in many applications in the social sciences, North-South and East-
West orientation are irrelevant on a small scale; only the relative distances matter.4 Suppose there is an
individual who visits a business to the North of her home because it is on the way to work in the North. If
the whole space was rotated counterclockwise by 90 degrees, the individual equally visits the same business
now to the West as it is still on the way to work, now also rotated to be to the West of her home. In image
classification, the use of data augmentation is common and associated with a reduction in overfitting and
greater generalizability of the learned models (Yaeger et al., 1996; Simard et al., 2003; Krizhevsky et al.,
2012).

Shifting the entire grid has two additional desirable effects: First, imposing a continuous shift of the grid
relative to covariates renders the exact discretization less relevant. The average (across draws from the shift
distribution) distance in grid cells between two observations becomes directly proportional to their actual
distance. Second, the location of an observation within a grid cell is no longer fixed. Shifting within-cell
location is attractive because the classification is not informative of whether the candidate treatment location
is at the center or towards the edge of a grid cell. With a continuous shift of the observations, the center of
the grid cell points to different absolute locations depending on the shift. One can then average over several
realizations of the shift to reduce the influence of the particular translation of grid cells to absolute locations.

Two notable alternatives or complements to data augmentation in the machine learning literature are
spatial transformer networks and imposing equivariance directly on the parameters. First, spatial transformer
networks (Jaderberg et al., 2015) estimate a rotation or other transformation that makes the subsequent
classification task as easy as possible. Second, recent work considers imposing the desired equivariance
property on the convolution kernel or adding layers to the network that effectively average the appropriate
kernel coefficients (Cohen and Welling, 2016; Dieleman et al., 2016; Gens and Domingos, 2014; Dudar and
Semenov, 2018; Dzhezyan and Cecotti, 2019). However, research suggests that data augmentation and other
regularization techniques already achieve the first-order gains implied by these properties (Srivastava et al.,
2014; Kauderer-Abrams, 2017; Yang et al., 2019). One can also inspect the models to assess the implied
degree of equivariance (Goodfellow et al., 2009; Zeiler and Fergus, 2014; Lenc and Vedaldi, 2015).

3In general adversarial networks, one input to the network is white noise. This noise effectively chooses between the different
local modes of the distribution. In the setup as a classification task proposed here, data augmentation, as described below,
plays a similar role.

4Applications in environmental economics are notable exceptions if, for instance, wind direction is relevant. In such cases,
rotation hinders the ability of the model to capture patterns due to, for instance, wind consistently blowing from one direction,
and may require the inclusion of wind direction in estimation. The choice of appropriate data augmentation is therefore
application specific.
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Table OA2: The initial sample of all possibly relevant businesses consists of all businesses in the SafeGraph
“point of interest” data with location within six miles from one of the five cities or with a zip code given in
the table.

city latitude longitude

South San Francisco 37.653540 -122.416866
Burlingame 37.584103 -122.366083
Belmont 37.516493 -122.294191
Menlo Park 37.451967 -122.177993
Mountain View 37.389389 -122.083210

ZIP codes:

94002, 94005, 94010, 94014, 94015, 94016, 94019,
94020, 94022, 94024, 94025, 94027, 94028,
94030, 94032, 94035, 94037, 94040, 94041, 94042, 94043, 94044,
94061, 94062, 94063, 94064, 94065, 94066, 94070,
94080, 94083, 94085, 94086, 94087, 94089,
94101, 94102, 94104, 94105, 94110, 94112, 94114, 94117,
94121, 94124, 94127, 94128, 94129,
94130, 94131, 94132, 94133, 94134, 94169, 94192,
94301, 94303, 94304, 94305, 94306, 94309,
94401, 94402, 94403, 94404, 94497, 94530, 94538, 94555, 94603,
95014, 95015, 95051, 95054, 95101, 95112

3 Implementation details for the empirical application

3.1 Data Processing

I use the July 2021 release of SafeGraph’s data for the year 2020. In this release of the data, SafeGraph applies
its current algorithm to the data it collected in 2020, and updates its data sets attributing smartphone pings
to businesses. In this paper, I focus on businesses in the San Francisco Bay Area, specifically in the Peninsula
and South Bay between South San Francisco and Sunnyvale, see Figure 2 in the main text. To create the
initial sample of all possibly relevant businesses for which SafeGraph has recorded data, I keep all businesses
that either lie within six miles from several points throughout the Bay Area or have a SafeGraph-determined
ZIP code falling within a list of relevant ZIP codes, see Table OA2.

To define the units of interest and ensure high-quality data for this application, I take three additional
steps in processing the data. First, I determine the grocery and convenience stores that I consider “treat-
ments” in this paper. Second, I manually set the location of each of these treatments to correspond to
the main entrance of the store. Third, I check and de-duplicate restaurant location data to restrict to real
restaurants that were likely to be open in early 2020.

Based on SafeGraph’s “point of interest” data, I find 167 unique grocery and convenience store (treatment)
locations that were open in 2020 in the interior of the study area. Starting from the sample defined above,
I define the possible businesses of interest as those within 3 miles of Burlingame, 5 miles of Belmont, 5.5
miles of Menlo Park, or 2.95 miles of Mountain View, with the city locations as in Table OA2. Focusing
on grocery stores in the interior of the study area guarantees that the full sample includes data on all
businesses that are within different distances of interest from the grocery stores. To find locations consumers
typically visit to purchase groceries, I start with all businesses with 4-digit NAICS code 4451 (grocery and
convenience stores) assigned by SafeGraph, and then add all Costco, Target, and Walmart stores (which
SafeGraph classifies as general merchandise stores, 4523), for a total of 313 stores. Of these stores, I exclude
28 stores that SafeGraph determines to have closed permanently before the COVID-19 pandemic (in or
before February 2020; there were no further grocery store closures until July as recorded by SafeGraph), as
well as 1 store that SafeGraph determines to have opened only in November 2020. For the remaining 284
stores, I verify manually that they fit my definition of grocery or convenience store. I exclude 100 stores;
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primarily convenience stores that are part of gas stations, delis, and food producers and importers/exporters
that are incorrectly classified as grocery stores by SafeGraph’s algorithm. I confirm, based on newspaper
articles, Yelp entries, and Google Street View imagery, that another 17 grocery stores were either not open
in 2020 (closed before or opened after) or were duplicate entries in the data set. Overall, I consider 167
treatment locations; 139 locations are labeled as grocery (or general merchandise) stores by SafeGraph, with
the remaining 28 labeled as convenience stores by SafeGraph.

For the 167 grocery and convenience stores in the sample, I manually determine the latitude and longitude
of the main entrance, which serves two related purposes. First, the main entrance and exit is the relevant
location to measure distances to or from for trip sequencing: If a consumer considers visiting a coffee shop
before or after a grocery store, the additional distance she has to travel is based on the front door of the
grocery store, not a location in the interior. Second, placing the location of grocery stores at their main
entrances typically reduces the differences between taking straight-line distance (as in this paper) and walking
distance (likely the economically relevant distance metric) between grocery stores and restaurants. When the
grocery store location is instead placed in the interior of the store, restaurants that are behind the grocery
store can appear closer than restaurants that are next door. Hence, placing the location of the grocery store
at its front entrance improves the interpretability of estimates by distance. The latitude and longitude given
in the SafeGraph data instead reflect “the general center of the business,”5 typically in the interior of the
store. I use Google Maps satellite as well as Street View imagery to locate the main entrances of all grocery
stores. For about three-quarters of the grocery and convenience stores, the difference in locations is less than
20 meters. The largest differences in locations (of around 70 meters) occur for a handful of particularly large
Costco, Safeway, Target, and Walmart stores.

I audit the data on restaurant (outcome unit) locations in three steps. First, I de-duplicate observations
by checking for similarity of business names between any two businesses with locations within 50 meters of
each other according to SafeGraph data. To detect duplicates based on name similarity, I focus my attention
on businesses with high relative Levenshtein distance. This distance measures the minimum number of
character edits needed to make the names of the two businesses equal, relative to the length of the longer
business name. Most duplicates I detect are clear typos in the name of one of the observations, and some are
abbreviations of business names that I verify to indeed describe the same business using Google Maps and
Street View data. Second, I audit the SafeGraph location data by comparing the latitude and longitude in
the SafeGraph “point of interest” data to the latitude and longitude obtained by searching for the business
name and street address (also from the “point of interest” data) on Google Maps. This analysis confirms the
high quality of the SafeGraph location data. Randomly inspecting the locations of a few dozen restaurants in
more detail, I find that neither the SafeGraph nor the Google maps locations are systematically closer to the
entrance of the restaurants. Given the much smaller size (area) of restaurants compared to grocery stores,
as well as the much greater number of restaurants, I do not manually record the latitudes and longitudes
of their entrances. Third, I focus on businesses that were reliably assigned visits by SafeGraph. I restrict
the non-grocery store sample to businesses for which SafeGraph reported at least 7 visits in each of the four
weeks starting in January 2020. This step excludes businesses that were not open at the time, not properly
assigned visits by SafeGraph’s algorithm, or are too small to reliably measure visits for, but retains 95-97.5%
of all visits (depending on the week) in the SafeGraph data. Importantly, I take each of the three steps
without knowledge of which businesses are, in the later analysis, considered treated or control.

3.2 Convolutional Neural Network

I use a convolutional neural network (CNN) to identify plausible counterfactual locations. First, I specify
the input into the training of the CNN. Second, I describe the architecture of the CNN. Third, I use the
trained CNN to predict many plausible counterfactual locations, followed by additional matching steps, to
select the final counterfactual locations used in the analysis.

I project the latitude and longitude of all businesses into two-dimensional Cartesian space using the
NAD83 (2011) projection, EPSG:6419 California zone 3. This projection gives the location in meters East
and North relative to a point near the San Francisco Bay Area. In applications where data come from different

5SafeGraph documentation, https://docs.safegraph.com/docs/core-places#section-latitude-longitude accessed on
July 29, 2021.
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Table OA3: Number of businesses by 4-digit NAICS code that are in the larger neighborhoods forming
the input into the convolutional neural network. The number of grocery stores exceeds 167 here because
additional grocery stores that are not in the interior of the main study area are included in these larger
neighborhoods.

NAICS code description # unique businesses

7225 Restaurants and Other Eating Places 1975
7139 Other Amusement and Recreation Industries 606
7121 Museums, Historical Sites, and Similar Institutions 409
8131 Religious Organizations 324
6111 Elementary and Secondary Schools 265
6244 Child Day Care Services 264
4451 Grocery Stores 244
4471 Gasoline Stations 182

any – 7845

regions, the researcher should choose the appropriate projection for each region to ensure the accuracy of
relative distances within regions.

The CNN learns to predict treatment locations in the areas around prespecified locations: real grocery
store locations and semi-randomly chosen locations. The semi-randomly chosen locations, together with the
real grocery store locations, are meant to cover the areas in which counterfactual locations could plausibly
occur. I start with the locations of all businesses for which the nearest grocery store is between 0.2 miles
and 2 miles away. The areas around businesses even closer to a grocery store are already included in
the consideration set by including the area of that grocery store. Next, I jitter these locations by adding
independent shocks from a normal distribution with mean ±0.0004 and standard deviation 0.0001 to their
latitudes and longitudes, where the sign of the mean is independently drawn to be +1 or −1 for each location
and coordinate. This step ensures that the center of each area does not fall exactly onto a business because
real grocery store locations never exactly coincide with the locations of other businesses. Finally, to avoid
including an area multiple times, I detect all pairs of jittered locations that are within 100 meters of one
another. I drop locations that are listed “first” (in the arbitrary order based on the row numbers of the
businesses the location is based on) in any such pair. The areas around both the resulting 1, 900 semi-random
locations and the 167 real grocery store locations are used as input to the CNN.

The CNN predictions are based on observable characteristics describing small 2D grid cells around the
prespecified locations. Each grid cell covers an area of 0.025mi× 0.025mi (approximately 40m× 40m). I use
the count of businesses by 4-digit NAICS code for the codes given in Table OA3 as observable characteristics
of each grid cell. That is, a cell covering two gasoline stations, one car dealership, and no other businesses,
will have “covariate value” 2 for the covariate indicating industry group 4471 (gasoline stations) and 3 for the
covariate indicating “any” industry, with the remaining covariates at 0 because there is no separate covariate
for the relatively rare car dealerships (NAICS code 4411, less than 100 in the study area).

Each input observation to the CNN consists of one of the 2,067 areas described above. The covariates of
the 2D grid are separate “channels” constituting a 3D tensor for each such observation. Each area consists
of 50×50 grid cells. All coordinates within an area are jointly shifted, rotated, and mirrored randomly using
independent uniform distributions for each of the three operations. The maximum absolute shift is such that
the original center is placed within one of the central 10× 10 grid cells. Hence, there are at least another 20
grid cells (0.5mi) of “padding” on all sites of the original center until the edge of the area.

The CNN consists of 4 sequential 2D convolutions and a final linear (fully connected) layer yielding
10 × 10 + 1 = 101 outputs. I use 2D instance normalization and leaky rectified linear activation for all
neurons in the CNN, and replication padding to ensure the output of each convolution has the same spatial
dimension as the input. The first convolution takes the 9 input channels (eight specific industries and one for
any industry) and convolves it with a kernel size of 5 (considering the 5×5 grid cells centered around a given
grid cell) into 18 channels. This layer can “smooth” the input such that the hard borders between grid cells
due to discretization become less relevant. The increase in the number of channels allows the neural network
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to learn a larger number of non-linearities. The second convolution takes the 18 channels of the previous
layer and convolves them with a kernel size of 21 with a stride of 2 into 36 channels, such that each grid cell
can view grid cells up to 20 cells away in any direction but skipping every other cell for parsimony. This layer
allows each grid cell to learn about its neighborhood up to even relatively large distances (approximately
20×0.025mi = 0.5mi). The third convolution takes the 36 channels of the previous layer and convolves them
with a kernel size of 5 into 36 channels, again allowing some smoothing across grid cells to counteract the
skipping of every other grid cell of the previous layer. The fourth convolution takes the 36 channels of the
previous layer and convolves them with a kernel size of 21 with a stride of 2 into a single channel. Intuitively,
this layer forces a single prediction for each grid cell based on the large neighborhood (up to 20 cells away in
any direction). The final layer linearly combines the 50× 50 grid cells of the single channel of the previous
layer into 101 “categories” that constitute the predictions of whether and where an additional grocery store
may be located.

The 101 categories correspond to the central 10× 10 grid as well as one category indicating a prediction
of no additional grocery store. I train the CNN on batches consisting of 64 observations (areas). Half
(32) of the observations are areas around a real grocery store, but with that grocery store removed from
the input channel count of grocery stores per grid cell. The random shift and rotation of the input are
such that this removed grocery store could have been in any of the central 10 × 10 grid cells. For these
observations, the prediction maximizing the cross-entropy loss is the category corresponding to the cell that
the grocery store has been removed from. All other categories are equal in terms of loss and worse than the
correct category, which trains the CNN to identify the mode, rather than the average, location. A quarter
(16) of the observations are areas around real grocery stores with no grocery store removed. The correct
classification of such observations is into the category corresponding to “no missing grocery store” instead
of any of the 10 × 10 grid cells. The last quarter (16) of the observations of each batch are areas around
the semi-random prespecified locations. Their correct classification is also the category corresponding to “no
missing grocery store.”

After training, I evaluate the areas of the prespecified locations for possible grocery store locations
according to the CNN. In this step, I input batches consisting of 32 observations into the trained CNN. In
each batch, 4 observations are areas around real grocery stores: 2 have the grocery store removed from the
input, while 2 do not have the grocery store removed. An additional 28 observations are areas around the
semi-random prespecified locations. The trained neural network calculates predictions for 5, 000 batches.
Predictions for observations with removed grocery stores allow me to learn the activation scores of real
grocery store locations. The remaining observations yield possible counterfactual locations.

I find good matches for real grocery store locations among the possible counterfactual locations in two
steps. In the first step, I find for each real grocery store location possible counterfactual locations with
similar CNN activation. Specifically, I take each prediction for a removed real grocery store separately
(there are multiple such predictions for each real grocery store under different random shifts, rotation, and
mirroring), and match in descending order of activation, with replacement, within the possible counterfactual
locations (excluding the prediction category for “no missing grocery store”). I repeat the same matching
process (matching with replacement using the complete set of possible counterfactual locations) using relative
activation within neighborhood-observation, corresponding to the cross-entropy loss function. Taking the
union of these matches, I obtain 19, 857 possible locations that the CNN evaluated as similar to a real
grocery store location under at least one shift, rotation, and mirroring. I drop 43 of these locations that
are closer to the nearest real grocery store than two thirds of the minimum distance between any two real
grocery stores. In the second step, I use propensity score matching to pick the final counterfactual locations
among the 19, 814 remaining locations. I estimate a propensity score model using the real and possible
counterfactual locations as observations in a logistic regression. There are three sets of regressors: 1) the
numbers of restaurants in distance bins of width 0.025 miles from the location, up to a distance of 0.2 miles;
2) the average number of grocery stores near the restaurants in each bin broken out for each bin into similar
bins of distance from the restaurant; 3) the total number of businesses (of any industry) in distance bins of
width 0.25 miles, up to a distance of 1 mile. I match, with replacement, each grocery store location to the
possible counterfactual location with the closest estimated propensity scores. The final sample consists of
162 counterfactual locations and the 167 real grocery store locations.

For the final sample of real grocery stores and most plausible counterfactual locations, I estimate a
propensity score to analyze the sample as a quasi-experiment conditional on these locations and propensity
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scores. The propensity score estimation uses the same regressors as the estimated propensity score for
matching. The inverse probability weighting estimator only uses this propensity score to weight the “control”
observations (restaurants near counterfactual locations) because the average treatment effect on the treated
(ATT) estimator does not require reweighting of the “treated” observations (restaurants near real grocery
stores). The primary purpose of re-estimating the propensity score is to balance exposure to grocery stores
appropriately between treated and control restaurants. When estimating the average effect of one marginal
grocery store on restaurants at a distance d, the treated and control restaurants at that distance indeed differ
on average by one grocery store at distance d, and have similar average exposure to grocery stores at other
distances as Figure 3 in the main text illustrates. By selecting the counterfactual locations from the CNN
predictions based on the relative locations of other businesses in the area, these locations and propensity
score weights also balance exposure to other businesses in the neighborhood as shown in Figure 4 of the
main text.

4 General weights and covariance across distances

Define the estimator

τ̃(d) ≡ µt(d)− µc(d) +

∑J
j=1 Wj

∑
s∈Sj 1{S ∋ s}

∑
i∈Ij wi(s, d)(Yi − µt(d))∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

−
∑J

j=1
1−Wj

1−πj
πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)(Yi − µc(d))∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

where

µt(d) ≡
∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)Yi(s)∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

µc(d) ≡
∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)Yi(0)∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

for arbitrary non-stochastic weights wi(s, d).
The theorem below describes the covariance of the estimator at different distances under Assump-

tions 1 and 3 from the main text combined with either Assumption 2 from the main text or Assumption OA1
defined here:

Assumption OA1 (Independent Assignment Across Regions). Treatments are assigned across regions in-
dependently. For j ̸= j′,

Wj ⊥⊥ Wj′

with marginal treatment probabilities Pr(Wj = 1) ≡ πj.
Conditional on treatment in region j, assignment to a particular location within the region is independent
of assignment in other regions j′. For all s ∈ Sj and s′ ∈ Sj′ with j ̸= j′: 1{S ∋ s} ⊥⊥ 1{S ∋ s′} | Wj =
1,Wj′ = 1.

Theorem OA1. Under Assumptions 1 and 3, with either Assumption 2 (C = 1) or Assumption OA1
(C = 0), the covariance of the estimator τ̃ at distances d and d′ is

cov(τ̃(d), τ̃(d′)) =
J − 1

J

Ṽ location
t (d, d′)

Jt
+

1

2

C

J

( Ṽ region
t (d | d′)

Jt
+

Ṽt(d
′ | d)
Jt

)
+

J − 1 + C

J

Ṽ region
c (d, d′)

Jc
+

1

2

J − 1 + C

J

( Ṽ region
c (d | d′)

Jc
+

Ṽ region
c (d′ | d)

Jc

)
− 1

2

J − 1 + C

J

( Ṽ region
ct (d, d′)

J
+

Ṽ region
ct (d′, d)

J

)
+

1

2

Ṽ region
tt (d, d′,C)

J
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where

Ṽ location
t (d, d′) =

1

J − 1

J∑
j=1

πj

π

∑
s∈Sj

πj(s)
Y t
j (s, d)

n̄(d)

Y t
j (s, d

′)

n̄(d′)

Ṽ region
t (d | d′) = 1

J − 1

J∑
j=1

πj

π

(∑
s∈Sj

πj(s)
Y t
j (s, d)√
n̄(d)n̄(d′)

)2
Ṽ region
c (d, d′) =

1

J − 1

J∑
j=1

πj

(πj

π

)2 1− π

1− πj

Y c
j (d)

n̄(d)

Y c
j (d

′)

n̄(d′)

Ṽ region
c (d | d′) = 1

J − 1

J∑
j=1

(1− π)
(πj

π

)2( Y c
j (d)√

n̄(d)n̄(d′)

)2
Ṽ region
ct (d, d′) =

1

J − 1

J∑
j=1

(πj

π

)2(∑
s∈Sj

πj(s)
Y t
j (s, d)− Y c

j (d
′)√

n̄(d)n̄(d′)

)2

Ṽ region
tt (d, d′,C) =

1

J − 1

J∑
j=1

(πj

π

)2(∑
s∈Sj

πj(s)
(Y t

j (s, d)− Y t
j (s, d

′))√
n̄(d)n̄(d′)

)2
·
J − 1− C

1−πj

πj

J

with
Y t
j (s, d) ≡

∑
i∈Ij

wi(s, d)(Yi(s)− µt(d)) Y c
j (d) ≡

∑
s∈Sj

πj(s)
∑
i∈Ij

wi(s, d)(Yi(0)− µc(d))

n̄(d) ≡ 1

J

J∑
j=1

πj

π

∑
s∈Sj

πj(s)
∑
i∈Ij

wi(s, d)

and π ≡ 1
J

∑J
j=1 πj, Jt ≡ πJ , and Jc ≡ (1− π)J correspond to the average region treatment probability and

expected number of treated and control regions. If they are constant (as under Assumption 2), the definitions
coincide with the notation of the main text.

Ṽ location
t (d, d′) is the pseudo-covariance of treated potential outcomes at distances d and d′ from the

same location. Ṽ region
t (d) is the pseudo-variance of the within-region average treated potential outcomes

at distance d from any location. Ṽ region
c (d, d′) is the pseudo-covariance of within-region average control

potential outcomes at distance d and d′. Ṽ region
c (d) is the pseudo-variance of the within-region average

control potential outcomes at distance d from any location. Ṽ region
ct (d, d′) is similar to a pseudo-variance of

treatment effects but contrasts treated potential outcomes at distance d with control potential outcomes at
distance d′. Ṽ region

tt (d, d′) is the pseudo-variance of the within-region average difference of treated potential
outcomes at distances d and d′. If πj is constant across j and d = d′, then Ṽ region

c (d) and Ṽ region
c (d, d′) can

be combined and except for the final term of Ṽ region
tt (d, d′), all region-level probabilities πj in the formulas

above cancel with their average, π. Ṽ region
tt (d, d′) = 0 mechanically when d = d′. n̄(d) is the approximate

simple region-average of the within-region expected number of effective (weighted) treated individuals. Note

that even Ṽ region
t (d | d′) and Ṽ region

c (d | d′) divide by the geometric mean of the approximate average effective
number of treated individuals at distance d and d′ despite squaring only potential outcomes at distance d.

Proof:
Rewrite the estimator

τ̃(d) = µt(d)− µc(d) +

∑J
j=1 Wj

∑
s∈Sj 1{S ∋ s}

∑
i∈Ij wi(s, d)(Yi(s)− µt(d))∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

−
∑J

j=1
1−Wj

1−πj
πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)(Yi(0)− µc(d))∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

by replacing the realized outcome Yi by the potential outcome Yi(s) or Yi(0) corresponding to the treatment
status that is selected by the indicators Wj1{S ∋ s} and 1−Wj .
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Let Tj(s) ≡ Wj1{S ∋ s}. Then Wj =
∑

s∈Sj Tj(s). Substituting Tj(s), Y t
j (s, d), and Y c

j (d):

τ̃(d) = µt(d)− µc(d) +

∑J
j=1

∑
s∈Sj Tj(s)Y

t
j (s, d)∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

−
∑J

j=1

1−
∑

s∈Sj
Tj(s)

1−πj
πjY

c
j (d)∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

.

Combining terms multiplied by the stochastic Tj(s),

τ̃(d) = µt(d)− µc(d) +

∑J
j=1

∑
s∈Sj Tj(s)(Y

t
j (s, d) +

πj

1−πj
Y c
j (d))∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

−
∑J

j=1
πj

1−πj
Y c
j (d)∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

.

In a design-based analysis, only Tj(s) is stochastic in the expression above. For ease of notation, define

m(d, d′) ≡

(
J∑

j=1

πj

∑
s∈Sj

πj(s)
∑
i∈Ij

wi(s, d)

)(
J∑

j=1

πj

∑
s∈Sj

πj(s)
∑
i∈Ij

wi(s, d
′)

)
.

Then

cov(τ̃(d), τ̃(d′)) = cov

(∑J
j=1

∑
s∈Sj Tj(s)(Y

t
j (s, d) +

πj

1−πj
Y c
j (d))∑J

j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

,

∑J
j=1

∑
s∈Sj Tj(s)(Y

t
j (s, d

′) +
πj

1−πj
Y c
j (d

′))∑J
j=1 πj

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d′)

)

=
J∑

j=1

∑
s∈Sj

J∑
j′=1

∑
s′∈Sj′

cov(Tj(s), Tj′(s′))

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j′(s

′, d′) +
πj′

1−πj′
Y c
j′(d

′)
)

m(d, d′)
.

The covariances are straightforward to derive because Tj(s) are Bernoulli random variables. Pr(Tj(s) =
1) = πjπj(s), and Pr(Tj(s) = 1 and Tj(s′) = 1) = 0 for s ̸= s′ by Assumption 3. Under independent
assignment, cov(Tj(s), Tj′(s′)) = 0 for j ̸= j′. If instead the number of treated regions is fixed and the
region-level probability of treatment is constant (Assumption 2), then one can obtain by the law of total
probability

E(Tj(s)Tj′(s′)) = πjπj(s)πj′(s)E(Wj′ | Wj = 1)

where E(Wj′ | Wj = 1) = πJ−1
J−1 because if j is treated, then πJ − 1 of the other J − 1 regions are treated,

all with equal probability, such that simple algebra yields

E(Tj(s)Tj′(s′))− E(Tj(s))E(Tj′(s′)) =
π(1− π)

J − 1
πj(s)πj(s

′).

Hence,

cov(Tj(s), Tj′(s′)) =


πjπj(s)(1− πjπj(s)) if j = j′, s = s′

−π2
jπj(s)πj(s

′) if j = j′, s ̸= s′

−Cπ(1−π)
J−1 πj(s)πj′(s

′) if j ̸= j′

where C = 1 for Assumption 2 and C = 0 for Assumption OA1.
Then

J∑
j=1

∑
s∈Sj

J∑
j′=1

∑
s′∈Sj′

cov(Tj(s), Tj′(s′))

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j′(s

′, d′) +
πj′

1−πj′
Y c
j′(d

′)
)

m(d, d′)

=

J∑
j=1

∑
s∈Sj

πjπj(s)(1− πjπj(s))

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j (s, d

′) +
πj

1−πj
Y c
j (d

′)
)

m(d, d′)

−
J∑

j=1

∑
s∈Sj

∑
s′∈Sj

1{s ̸= s′}π2
jπj(s)πj(s

′)

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j (s

′, d′) +
πj

1−πj
Y c
j (d

′)
)

m(d, d′)

− C

J∑
j=1

∑
s∈Sj

J∑
j=1

∑
s′∈Sj′

1{j ̸= j′}π(1− π)

J − 1
πj(s)πj′(s

′)

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j′(s

′, d′) +
πj′

1−πj′
Y c
j′(d

′)
)

m(d, d′)
.
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Adding and subtracting the s = s′ term from the second summation and combining the added term with
the first summation:

=

J∑
j=1

∑
s∈Sj

πjπj(s)

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j (s, d

′) +
πj

1−πj
Y c
j (d

′)
)

m(d, d′)

−
J∑

j=1

∑
s∈Sj

∑
s′∈Sj

π2
jπj(s)πj(s

′)

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j (s

′, d′) +
πj

1−πj
Y c
j (d

′)
)

m(d, d′)

− C

J∑
j=1

∑
s∈Sj

J∑
j=1

∑
s′∈Sj′

1{j ̸= j′}π(1− π)

J − 1
πj(s)πj′(s

′)

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j′(s

′, d′) +
πj′

1−πj′
Y c
j′(d

′)
)

m(d, d′)
.

Similarly adding and subtracting the j = j′ term of the third summation, as well as using that π ≡ πj for
all j under Assumption 2, yields

=

J∑
j=1

∑
s∈Sj

πjπj(s)

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j (s, d

′) +
πj

1−πj
Y c
j (d

′)
)

m(d, d′)

−
J∑

j=1

∑
s∈Sj

∑
s′∈Sj

(π2
jπj(s)πj(s

′)− C
πj(1− πj)

J − 1
πj(s)πj(s

′))

(
Y t
j (s, d) +

πj

1−πj
Y c
j (d)

)(
Y t
j (s

′, d′) +
πj

1−πj
Y c
j (d

′)
)

m(d, d′)

− C

J∑
j=1

∑
s∈Sj

J∑
j=1

∑
s′∈Sj′

π(1− π)

J − 1
πj(s)πj′(s

′)

(
Y t
j (s, d) +

π
1−πY

c
j (d)

)(
Y t
j′(s

′, d′) + π
1−πY

c
j′(d

′)
)

m(d, d′)
.

The third summation consists of products that are separable in j and j′. Substituting for Y t
j (s, d) and

Y c
j (d) and refactoring the summation yields a factor

∑J
j=1 π

∑
s∈Sj πj(s)(Y

t
j (s, d) +

π
1−πY

c
j (d)) = 0:

J∑
j=1

π
∑
s∈Sj

πj(s)Y
t
j (s, d) =

J∑
j=1

π
∑
s∈Sj

πj(s)
∑
i∈Ij

wi(s, d)(Yi(s)− µt(d)) = 0

J∑
j=1

π
∑
s∈Sj

πj(s)
π

1− π
Y c
j (d) =

π

1− π

J∑
j=1

π
(∑
s∈Sj

πj(s)
)∑

s∈Sj

πj(s)
∑
i∈Ij

wi(s, d)(Yi(0)− µc(d)) = 0

by the definitions of µt(d) and µc(d) and because
∑

s∈Sj πj(s) = 1. Hence the third summation in the
variance expression is equal to 0.

Next, expand the products of potential outcomes:(
Y t
j (s, d) +

πj

1− πj
Y c
j (d)

)(
Y t
j (s

′, d′) +
πj

1− πj
Y c
j (d

′)
)

=Y t
j (s, d)Y

t
j (s

′, d′) +
πj

1− πj
Y t
j (s, d)Y

c
j (d

′) +
πj

1− πj
Y t
j (s

′, d′)Y c
j (d) +

( πj

1− πj

)2
Y c
j (d)Y

c
j (d

′).

Dropping the third summation that equals zero of the variance formula, substituting these four products, and
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simplifying the variance formula by combining terms with identical products of potential outcomes yields

cov(τ̃(d), τ̃(d′)) =

J∑
j=1

πj

∑
s∈Sj πj(s)Y

t
j (s, d)Y

t
j (s, d

′)

m(d, d′)

+ (1 +
C

J − 1
)

J∑
j=1

π2
j

(∑
s∈Sj πj(s)Y

t
j (s, d)

)(
Y c
j (d

′)
)

m(d, d′)

+ (1 +
C

J − 1
)

J∑
j=1

π2
j

(∑
s∈Sj πj(s)Y

t
j (s, d

′)
)(
Y c
j (d)

)
m(d, d′)

+ (1 +
C

J − 1
)

J∑
j=1

π3
j

1− πj

Y c
j (d)Y

c
j (d

′)

m(d, d′)

−
J∑

j=1

(π2
j − C

πj(1− πj)

J − 1
)

(∑
s∈Sj πj(s)Y

t
j (s, d)

)(∑
s∈Sj πj(s)Y

t
j (s, d

′)
)

m(d, d′)
.

Based on the binomial formula, ab = 1
2 (a

2 + b2 − (a− b)2), so

(∑
s∈Sj

πj(s)Y
t
j (s, d)

)(
Y c
j (d

′)
)
=

1

2

((∑
s∈Sj

πj(s)Y
t
j (s, d)

)2
+
(
Y c
j (d

′)
)2 − (∑

s∈Sj

πj(s)Y
t
j (s, d)− Y c

j (d
′)
)2)

(∑
s∈Sj

πj(s)Y
t
j (s, d)

)(∑
s∈Sj

πj(s)Y
t
j (s, d

′)
)
=
1

2

((∑
s∈Sj

πj(s)Y
t
j (s, d)

)2
+
(∑
s∈Sj

πj(s)Y
t
j (s, d

′)
)2

−
(∑
s∈Sj

πj(s)(Y
t
j (s, d)− Y t

j (s, d
′))
)2)

.

Hence

cov(τ̃(d), τ̃(d′)) =

J∑
j=1

πj

∑
s∈Sj πj(s)Y

t
j (s, d)Y

t
j (s, d

′)

m(d, d′)

+
1

2

C

J − 1

J∑
j=1

πj

(∑
s∈Sj πj(s)Y

t
j (s, d)

)2
+
(∑

s∈Sj πj(s)Y
t
j (s, d

′)
)2

m(d, d′)

+ (1 +
C

J − 1
)

J∑
j=1

π3
j

1− πj

Y c
j (d)Y

c
j (d

′)

m(d, d′)

+
1

2
(1 +

C

J − 1
)

J∑
j=1

π2
j

(
Y c
j (d)

)2
+
(
Y c
j (d

′)
)2

m(d, d′)

− 1

2
(1 +

C

J − 1
)

J∑
j=1

π2
j

(∑
s∈Sj πj(s)Y

t
j (s, d)− Y c

j (d
′)
)2

+
(∑

s∈Sj πj(s)Y
t
j (s, d

′)− Y c
j (d)

)2
m(d, d′)

+
1

2

J∑
j=1

(1− C
1− πj

πj(J − 1)
)π2

j

(∑
s∈Sj πj(s)(Y

t
j (s, d)− Y t

j (s, d
′))
)2

m(d, d′)
.

Theorem OA1 follows directly by defining and factorizing the terms given in the theorem.

5 Aggregate Effects

The aggregate effect of a single treatment on all affected individuals is of importance for cost-benefit and
welfare analyses. In this section, I propose estimators of aggregate effects that build on the estimators of
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individual-level effects of the previous section.
In experiments with spatial treatments, there are two units of observation: outcome individuals and

spatial treatments. The treatment effects discussed in the main part of the paper are average effects per
outcome individual. The aggregate treatment effects of this section are average effects per spatial treatment.

Suppose the researcher is interested in the aggregate effect that a single treatment location has on all
affected individuals. Define the estimand

τagg ≡
∑J

j=1

∑
s∈Sj πjπj(s)wj(s)

∑
i∈Ij τi(s)∑J

j=1 πj

∑
s∈Sj πj(s)wj(s)

where, as before, τi(s) = Yi(s) − Yi(0) is the effect of treatment location s on individual i. The aggregate
treatment effect sums the τi(s) across individuals i and averages them across candidate treatment locations
s, with weights wj(s).

In this section, I focus on the average aggregate treatment effect on the treated, τAATT , which uses
weights wj(s) = 1. The estimand places larger weight on the effects of treatment locations that are more
likely to be realized. The estimand τAATT therefore answers the question: What is the expected aggregate
effect of a treatment location under the observed policy of assigning treatments to locations?

One can estimate the aggregate effect τAATT by aggregating outcomes at the region-level:

τ̂AATT,1 ≡ 1∑J
j=1 Wj

J∑
j=1

WjYj −
1∑J

j=1
(1−Wj)πj

1−πj

J∑
j=1

(1−Wj)πj

1− πj
Yj

where Yj ≡
∑

i∈Ij Yi. τ̂AATT,1 is the inverse probability weighting estimator of an average treatment effect
on the treated, where the outcome variable of interest is the sum of the outcomes of all individuals in a
region. When there is a single candidate treatment location per region, standard results from the literature
on experiments with individual-level treatments apply (cf. Imbens, 2004), with regions taking the role of
individuals.

Estimators based on region-aggregate outcomes are likely to have large variance. Each region-aggregate
outcome is the sum of outcomes of individuals in the region. If there is substantial variance in the number
of individuals per region and outcomes are positive, the aggregate outcome of regions with many individuals
can be substantially larger than the aggregate outcome of smaller regions. For instance, suppose that the
number of individuals per region is Poisson distributed with mean n, and individual-level outcomes are i.i.d.
within and across regions, with mean µ and variance σ2. Then region-aggregate outcomes have variance
n · (σ2 + µ2) by the law of total variance. Hence, aggregate potential outcomes have large variance, which
leads to a large variance of the estimator (cf. Imbens, 2004).

Variation in region sizes generates a large variance of the region-aggregate estimator τ̂AATT,1 in two ways.
First, if there is variance in the number of individuals per region, then in finite samples, some treatment
assignments will be such that there are more individuals in treated regions than in control regions.6 Suppose
outcomes are positive and constant, such that all individuals have the same (positive) value for the outcome.
Then the treatment effect estimate τ̂AATT,1 in such a sample is positive and sensitive to the scale of the
outcome value. Hence, the estimator τ̂AATT,1 can have a large variance even when there is no variance in
potential outcomes. Second, variation in region sizes increases the variance in a sampling-of-regions thought
experiment. Even if the average individual-level treatment effect was known, needing to estimate the number
of times the effect is realized on average per region can increase the variance substantially. The design-based
variances considered in this paper condition on the individuals in the sample. With a known number of
individuals and a known individual-level average treatment effect, it is possible to form an estimator of
aggregate treatment effects with a design-based variance equal to zero, in contrast to the variance results for
the estimator τ̂AATT,1 above.

I recommend an estimator of average aggregate effects that reduces the variance by building on the
estimators of average individual-level effects at a distance d. Let

τ̂AATT,2 ≡
∑
d∈D

ñ(d)τ̂(d)

6Stratification in the experimental design or analysis is an alternative solution to this problem. However, when the number
of regions is small or moderate, stratification may not be practical or sufficient to resolve this issue.
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where ñ(d) is the average number of individuals at distance d± h from candidate treatment locations:

ñ(d) =

∑J
j=1

∑
s∈Sj πjπj(s)

∑
i∈Ij wi(s, d)∑J

j=1

∑
s∈Sj πjπj(s)

using the same distance bins for both τ̂(d) and n̄(d), wi(s, d) = 1{|d(s, ri) − d| ≤ h}. Here, the choice of
distance bin (instead of a different kernel) is essential. The set of distances D contains the midpoints of the
bins that partition the full space into distance bins. For instance, if one uses distance bins [0, 1], (1, 2], . . . ,
(9, 10] for a treatment that is known not to have effects past a distance of 10 miles, then D = {0.5, 1.5, . . . , 9.5}
and h = 0.5.

The theoretical properties of the estimator τ̂AATT,2 follow from those of τ̂(d) in Theorem 1 of the main
text, and the covariance across distances as given in Theorem OA1.

Theorem OA2. Under Assumptions 1, 3, and 2, the estimator τ̂AATT,2 has an approximate finite population
distribution over the assignment distribution with

(i) unbiasedness: E(τ̂AATT,2) ≈ τAATT

(ii) variance:

var
(
τ̂AATT,2

)
≈
∑
d∈D

ñ(d)2
(J − 1

J

Ṽ location
t (d)

Jt
+

Ṽ region
c (d)

Jc
+

1

J

Ṽ region
t (d)

Jt
− Ṽ region

ct (d)

J

)
+ 2

∑
d∈D

∑
d′∈D,d′ ̸=d

ñ(d)ñ(d′)
(J − 1

J

Ṽ location
t (d, d′)

Jt
+

Ṽ region
c (d, d′)

Jc

+
1

J

Ṽ region
t (d, d′)

Jt
− Ṽ region

ct (d, d′)

J

)
where

Ṽ location
t (d, d′) ≡ 1

n̄(d) · n̄(d′) · (J − 1)

J∑
j=1

∑
s∈Sj

πj(s)

((∑
i∈Ij

1{|d(s, ri)− d| ≤ h}(Yi(s)− µt(d))
)

·
(∑
i∈Ij

1{|d(s, ri)− d′| ≤ h}(Yi(s)− µt(d
′))
))

Ṽ region
c (d, d′) ≡ 1

n̄(d) · n̄(d′) · (J − 1)

J∑
j=1

((∑
s∈Sj

πj(s)
∑
i∈Ij

1{|d(s, ri)− d| ≤ h}(Yi(0)− µc(d))
)

·
(∑
s∈Sj

πj(s)
∑
i∈Ij

1{|d(s, ri)− d′| ≤ h}(Yi(0)− µc(d
′))
))

Ṽ region
t (d, d′) ≡ 1

n̄(d) · n̄(d′) · (J − 1)

J∑
j=1

((∑
s∈Sj

πj(s)
∑
i∈Ij

1{|d(s, ri)− d| ≤ h}(Yi(s)− µt(d))
)

·
(∑
s∈Sj

πj(s)
∑
i∈Ij

1{|d(s, ri)− d′| ≤ h}(Yi(s)− µt(d
′))
))

Ṽ region
ct (d, d′) ≡ 1

n̄(d) · n̄(d′) · (J − 1)

J∑
j=1

((∑
s∈Sj

πj(s)
∑
i∈Ij

1{|d(s, ri)− d| ≤ h}
(
Yi(s)− Yi(0)− (µt(d)− µc(d))

))

·
(∑
s∈Sj

πj(s)
∑
i∈Ij

1{|d(s, ri)− d′| ≤ h}
(
Yi(s)− Yi(0)− (µt(d

′)− µc(d
′))
)))

and n̄(d), µt(d), and µc(d) are defined as in Theorem 1.
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Proof: The variance result follows from Theorems 1 and OA1. For approximate unbiasedness, note that
ñ(d) is non-stochastic, hence by Theorem 1 and the definition of ñ(d)

E(τ̂AATT,2) =
∑
d∈D

ñ(d)E(τ̂(d))

≈
∑
d∈D

ñ(d)

∑J
j=1

∑
s∈Sj πjπj(s)

∑
i∈Ij 1{|d(s, ri)− d| ≤ h}τi(s)∑J

j=1

∑
s∈Sj πjπj(s)

∑
i∈Ij 1{|d(s, ri)− d| ≤ h}

=

∑J
j=1

∑
s∈Sj πjπj(s)

∑
d∈D

∑
i∈Ij 1{|d(s, ri)− d| ≤ h}τi(s)∑J

j=1

∑
s∈Sj πjπj(s)

=

∑J
j=1

∑
s∈Sj πjπj(s)

∑
i∈Ij τi(s)∑J

j=1

∑
s∈Sj πjπj(s)

= τAATT

Remark 1. The optimal choice of distance bins (and bandwidths) remains an open question. If individuals
are distributed uniformly across space, equal-width rings with larger radii have a larger area and hence
contain more individuals. In practice, in densely populated areas, smaller bins may be preferable, and under
suitable sequences of populations (infill asymptotics and growing number of regions), it may be possible to
allow h → 0 and |D| → ∞. Generally, in the formula above, additional distance bins decrease the (squared)
weights ñ(d) at the cost of increasing variances var

(
τ̂(d)

)
.

6 Estimator when only the nearest realized location matters

The identification argument in the proof of Theorem 3 suggests the estimator

τ̂nearest(d) ≡
∑

s∈S 1{S ∋ s}
∑

i∈I
Ni(s)

Pr(Ni(s)=1|S∋s)wi(s, d)Yi∑
s∈S 1{S ∋ s}

∑
i∈I

Ni(s)
Pr(Ni(s)=1|S∋s)wi(s, d)

−
∑

s∈S
1{S/∋s}
1−πs

πs

∑
i∈I

Ni(0)
Pr(Ni(0)=1|S/∋s)wi(s, d)Yi∑

s∈S
1{S/∋s}
1−πs

πs

∑
i∈I

Ni(0)
Pr(Ni(0)=1|S/∋s)wi(s, d)

where Ni(s) is an indicator for s being the nearest realized treatment location to i, and Ni(0) is an indicator
for no treatment location within d0 of i being realized:

Ni(s) = 1{S ∋ s}
∏

s′∈S\{s}

(1− 1{S ∋ s′})1{d(s
′,ri)<d(s,ri)}

Ni(0) =
∏
s∈S

(1− 1{S ∋ s})1{d(s,ri)<d0}

and the (conditional) probabilities of these events are, under independent assignment,

Pr(Ni(s) = 1 | S ∋ s) =
∏

s′∈S\{s}

(1− πs)
1{d(s′,ri)<d(s,ri)}

Pr(Ni(0) = 1 | S /∋ s) =
1

1− πs

∏
s′∈S

(1− πs′)
1{d(s,ri)<d0}.

It is straightforward to show that E(τ̂nearest(d)) ≈ τ(d) and the approximate variance of the estimator can
be derived analogously to the previous results.

If the event Ni(0) is rare, the variance of the τ̂nearest(d) will likely be large. The difficulty lies in estimating
the weighted mean of Yi(0). Additive separability allows identifying this mean from differences in exposure,
but Assumption 7 only allows using individuals who are unexposed to the treatment (within distance d0).
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Under Assumption 7, the estimator, therefore, tends to use drastically fewer observations, increasing the
variance.

There are, effectively, two options for addressing this issue. First, the researcher can impose additional
structure. As discussed, under, for instance, Assumption 5, alternative estimators with likely smaller variance
are feasible. Other assumptions more in the spirit of Assumption 7 may be conceivable. Second, the
researcher can change the target of estimation. Minor improvements in the variance are possible by choosing
weights wi(s, d) including a factor Pr(Ni(s) = 1 | S ∋ s) or, for interpretation likely less attractively,
Pr(Ni(0) = 1 | S /∋ s). More substantial gains arise by changing the estimand to not rely on treatment
effects τi(s) but instead build on τi(s | Si(s)) for some Si(s) ⊂ {s′ ∈ S : d(s, ri) ≤ d(s′, ri)}. More research
is needed to develop recommendations for the choice of Si(s) with desirable interpretation and inferential
properties.

7 Variance Estimation

The variance in Theorem 1 depends on four variances: Ṽ location
t (d), Ṽ region

c (d), Ṽ region
t (d), and Ṽ region

ct (d).

The first two variances are straightforward to estimate, as given below. The third variance, Ṽ region
t (d) cannot

be estimated directly, but is bounded by Ṽ location
t (d). Alternatively, it can be approximated as discussed

below. The fourth variance, the variance of treatment effects Ṽ region
ct (d), is generally not identified,7 but

since it appears negatively in the overall variance, it can be dropped resulting in a conservative estimator of
the variance (cf. Imbens and Rubin, 2015, ch. 6).

A natural estimator of Ṽ location
t (d) is

V̂ location
t (d) ≡

∑J
j=1

∑
s∈Sj Wj1{Sj = s}

(∑
i∈Ij wi(s, d)(Yi − Ȳt(d))

)2
(Jt − 1)

(
1
Jt

∑J
j=1

∑
s∈Sj Wj1{Sj = s}

∑
i∈Ij wi(s, d)

)2
which takes the average squared difference from the mean over those individuals who are treated at distance
d. Note that while one can calculate n̄(d) exactly, it is likely preferable in practice to use the average
number of individuals near treated locations in the sample, which more accurately reflects the averaging in
the numerator.

Similarly, a natural estimator of Ṽ region
c (d) is

V̂ region
c (d) ≡

∑J
j=1(1−Wj)

(∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)(Yi − Ȳc(d))

)2
(Jc − 1)

(
1
Jc

∑J
j=1(1−Wj)

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

)2 .

Using V̂ location
t (d) as a conservative estimator of Ṽ region

t (d), the conservative estimator for the variance
of the estimator τ̂(d) is

v̂arconservative(τ̂(d)) ≡
V̂ location
t (d)

Jt
+

V̂ region
c (d)

Jc
.

If there is reason to believe that there is substantial variance within regions (rather than across regions), it

may be preferable to approximate Ṽ region
t (d) directly rather than estimate it conservatively with V̂ location

t (d).
Specifically, consider forming the estimator

V̂ location
c (d) ≡

∑J
j=1(1−Wj)

∑
s∈Sj πj(s)

(∑
iIj wi(s, d)(Yi − Ȳc(d))

)2
(Jc − 1)

(
1
Jc

∑J
j=1(1−Wj)

∑
s∈Sj πj(s)

∑
i∈Ij wi(s, d)

)2
7For the variance of treatment effects to be zero (constant treatment effects), the distributions of treated and control must be

identical up to a location shift. More generally, the covariance of treated and control potential outcomes is partially identified
from the marginal variances. Heckman et al. (1997) use the Fréchet-Hoeffding inequality to form bounds on the variance of
treatment effects. Aronow et al. (2014) use the same bounds to improve the Neyman (1923, 1990, cf. Imbens and Rubin (2015))
variance estimator.
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which is analogous to V̂ location
t (d) but for control, rather than treated, regions. Under some assumptions, for

instance, constant additive or constant multiplicative treatment effects,

Ṽ region
t (d)

Ṽ location
t (d)

=
Ṽ region
c (d)

Ṽ location
c (d)

where Ṽ location
c (d) is the appropriate population analogue, such that a plausible estimator for Ṽ region

t (d) is

V̂ region
t (d) = V̂ location

t (d)
V̂ region
c (d)

V̂ location
c (d)

.

This estimator uses that the ratio of within-region and across-region variances of treated and control
potential outcomes are approximately similar in most settings where the effect of the treatment (and its
heterogeneity) is small relative to other sources of variance in the outcome. When the equality of ratios is

not exact, deviations can lead to either conservative or anti-conservative estimates of Ṽ region
t (d). In practice,

even if the estimator V̂ region
t (d) is not conservative, the variance estimator

v̂arapprox(τ̂(d)) ≡
J − 1

J

V̂ location
t (d)

Jt
+

V̂ region
c (d)

Jc
+

1

J

V̂ region
t (d)

Jt

likely is still conservative for var(τ̂(d)) by the omission of the variance of treatment effects term.
Comparison of the conservative variance estimate, v̂arconservative(τ̂(d)), and the variance estimate using

the approximation, v̂arapprox(τ̂(d)), can serve as a plausible benchmark for the benefits any refinements of

estimators of Ṽ region
t (d) can plausibly yield. In practice, since Ṽ region

t (d) receives weight 1
J relative to the

other variances, the difference is likely to be small.

8 Parametric Estimators

I discuss issues in imposing parametric assumptions on the decay of treatment effects over distance from
treatment and estimation by least squares regression. First, I show how to impose a parametric model on
the individual-level effects at different distances. Second, I show how to estimate aggregate effects based on
such a model.

Linear parametric models for the decay of average treatment effects over distance from treatment take
the form

τ(d) =
∑
k

βkλ̃k(d)

where λ̃k are known functions of distance, and βk are coefficients to be estimated.
In many settings, one needs to impose a distance after which the treatment has no effect, even within a

region, to obtain reasonable estimates from parametric models. Assumption 6 in the main text formalizes
this assumption. Without such a restriction, any simple functional form for λ̃ will typically offer a poor
approximation for at least some distances d from treatment.

One can improve the approximation to the treatment effect at short distances by using functions that
only fit the treatment effect pattern up to the maximum distance d0:

τ(d) =
∑
k

βkλk(d)1{d ≤ d0}.

Relatively simple functions λk may well approximate the average treatment effects at distances d ∈ (0, d0).
The assumption resembles a “bet on sparsity” (Hastie et al., 2001): If treatment effects are negligible at
distances longer than d0, the estimators proposed below will likely perform well. If treatment effects are not
negligible even at long distances, then no (parametric) estimator will perform well.

For instance, one can impose a linear functional form on the treatment effect decay by choosing λ1(d) = 1,
λ2(d) = d. The coefficient β2 then measures the rate of decay, while β1 measures the effect of the treatment
on individuals right by the treatment location. A quadratic functional form is imposed by λ1(d) = 1,
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Figure OA2: Illustration of imposing continuous effects in distance at d0. The figure shows a scatter plot of
outcomes against distance from treatment with an unrestricted and restricted quadratic fit superimposed.

λ2(d) = d, λ3(d) = d2. In principle, the analysis in this section can be extended also to functional forms
that are non-linear in the parameters, such as exponential decay of treatment effects with an unknown rate
of decay, τ(d) = exp(−βd).

To estimate the parameter β, suppose initially that there is only a single candidate treatment location in
each region. Then one can define the distance of individual i from the candidate treatment location uniquely
as di, irrespective of realized treatment. Then estimate the weighted linear regression

Yi =
∑
k

βk

(
Wj(i)λk(di, xi)1{di ≤ d0}

)
+ h(di) + ϵi

with ATT inverse probability weights (weight 1 on the treated, weight πj/(1 − πj) on the control). The
functions λk(di, xi) can depend on individual characteristics xi to allow for heterogeneity in effects, such as
separate λk for distinct groups of individuals.

The function h models the average control potential outcomes at each distance from candidate treatment
locations. For semiparametric estimation, specify the treatment effect decay (λ) parametrically, and estimate
h nonparametrically, as a partially linear model (e.g. Robinson, 1988). Here, I instead focus on parametric
linear estimation, which imposes known parametric functions λ and h and estimates their coefficients:

Yi = α0 +
∑
k

βk

(
Wj(i)λk(di, xi)1{di ≤ d0}

)
+
∑
ℓ

γℓ

(
hℓ(di)1{di ≤ d0}

)
+ ϵi.

The same caveat about setting a maximum distance applies also to h. Since there is no interest in effects at
distances larger than d0, the constant α0 captures the mean outcome for individuals at these larger distances.

In practice, one typically not only wants to impose a zero treatment effect after distance d0, but a
treatment effect that tends to zero continuously at d0.

8 To this end, estimate the linear regression with
transformed covariates

Yi = α0 +
∑
k

βk

(
Wj(i)(λk(di, xi)− λk(d0, xi))1{di ≤ d0}

)
+
∑
ℓ

γℓ

(
hℓ(di)1{di ≤ d0}

)
+ ϵi

which imposes the restriction τ(d0) =
∑

k βkλk(d0) = 0. Figure OA2 illustrates what it means to impose this
restriction. In panel (a), without the restriction, the estimated treatment effect will jump to 0 discontinuously
at d0. Imposing the restriction in panel (b), the estimated treatment effect is continuous also at d0. The
restriction generally reduces the variance of the estimator, in particular for estimating aggregate effects, as
discussed below. In practice, most functional forms for λ imply not just a zero effect after distance d0, but
also a non-zero effect at distances slightly shorter than d0.

8In principle, one could additionally impose higher-order smoothness such as differentiability at d0. However, higher-order
smoothness generally requires more complicated functional forms λ to retain sufficient flexibility at shorter distances. In practice,
more complicated functional forms likely negate any improvements in precision.
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The same parametric functional form can be imposed to estimate the average aggregate effects of the
treatment. Under the parametric model, the average aggregate treatment effect on the treated is

τAATT =
1

J

∑
i

∑
k

βk(λk(di, xi)− λk(d0, xi))1{di ≤ d0}

Solving for β1 and substituting the resulting expression in the regression specification above, one obtains the
one-step regression specification

Yi = α0 + τAATT
(
Wj(i)

(λ1(di, xi)− λ1(d0, xi))1{di ≤ d0}
1
J

∑
i′(λ1(di′ , xi′)− λ1(d0, xi′))1{di′ ≤ d0}

)
+
∑
k

βk

((
Wj(i)(λk(di, xi)− λk(d0, xi))1{di ≤ d0}

)
−
(
Wj(i)(λk(di, xi)− λk(d0, xi))1{di ≤ d0}

·
1
J

∑
i′(λk(di′ , xi′)− λk(d0, xi′))1{di′ ≤ d0}

1
J

∑
i′(λ1(di′ , xi′)− λ1(d0, xi′))1{di′ ≤ d0}

))
+
∑
ℓ

γℓ

(
hℓ(di)1{di ≤ d0}

)
+ ϵi

where the coefficient on the first (transformed) covariate is the estimate of the average aggregate treatment
effect. The transformed covariates are readily computed by realizing they are equal to the original covariates
multiplied or shifted by average covariates. The average here is taken across all regions, both treated
and untreated, such that this estimate has similarly attractive properties as the nonparametric estimator
τ̂AATT,2 above, in leveraging that the number of individuals near candidate treatment locations are available
irrespective of assignment.

When there is more than one candidate treatment location per region, augment the regression approach
as follows. The variable di is not uniquely defined, since there are multiple “distances from candidate
treatment locations” for individuals. Suppose individual i in a control region (Wj(i) = 0) is 1 mile away from
one candidate treatment location and 5 miles away from a different candidate treatment location. Then i
should be used to estimate the control mean h(d) for the two distances d = 1 and d = 5. One can therefore
duplicate observation i. Specifically, if individual i is in a region with |Sj(i)| candidate treatment locations,
then include i |Sj(i)| times in the regression. Each version of i uses the distance di to a different candidate
treatment location. Observations in control regions at their distance relative to candidate locations s then
receive ATT inverse probability weights πjπj(s)/(1− πj) to ensure E(ϵi|di = d, xi = x) = 0.

Simulations (not reported) suggest that standard errors clustered at the region level (cf. Liang and Zeger,
1986) provide a reasonable, but perhaps conservative, estimate of the variance of these estimators. One can
derive formal results along the lines of Abadie et al. (2020, 2017). When there is a single candidate treatment
location per region and a single distance of interest, the spatial setting considered here coincides with the
setting of clustered assignment of Abadie et al. (2017), and hence their results and interpretation of Liang
and Zeger (1986) clustered standard errors follow immediately. Refinements of Liang and Zeger (1986)
clustered standard errors may be possible following Abadie et al. (2020) for the non-clustered setting using
“attributes.” In the spatial setting, such attributes are readily available in the form of the number of units
near candidate treatment locations. Effectively, one can form a tighter bound on the variance of treatment
effects using these attributes by exploiting heterogeneous treatment effects and appealing to the law of total
variance to maintain that the estimator is still conservative for the true variance. For parametric models of
the treatment effect by distance, one needs to extend the analysis of Abadie et al. (2017) to include (multiple)
continuous regressors that are deterministic functions of the binary, randomly assigned, treatment. With
multiple candidate treatment locations per region, one further needs to extend the binary treatment to a
multi-valued (but still discrete) treatment.
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9 Variance in Single Region Settings

Write the infeasible estimator as:

τ̃ = µt − µc +

∑
s∈S 1{S ∋ s}

∑
i∈I wi(s, d)(Yi − µt)∑

s∈S πs

∑
i∈I wi(s, d)

−
∑

s∈S 1{S /∋ s} πs

1−πs

∑
i∈I wi(s, d)(Yi − µc)∑

s∈S πs

∑
i∈I wi(s, d)

= µt − µc +

∑
s∈S 1{S ∋ s}

∑
i∈I wi(s, d)(Yi − µt)−

∑
s∈S 1{S /∋ s} πs

1−πs

∑
i∈I wi(s, d)(Yi − µc)∑

s∈S πs

∑
i∈I wi(s, d)

where, for brevity, I suppress the dependence of µ on d throughout.
Define exposure mappings (Aronow and Samii, 2017) based on Assumption 6 as follows. Mi ≡ 2{s∈S: d(s,ri)≤d0}

is the set of all possible ways in which treatment can be assigned to those locations that possibly af-
fect i. With slight abuse of notation, denote i’s potential outcome under exposure m ∈ Mi by Yi(m).
Let the random variable Mi

m be the indicator for whether exposure m of individual i is realized. Then
Yi =

∑
m∈Mi

Mi
mYi(m). Denote the marginal and joint probabilities of exposures by πi

m ≡ Pr(Mi
m = 1)

and πi,i′

m,m′ ≡ Pr(Mi
m = 1 and Mi′

m′ = 1). Let

T a
s ≡


1 if a = t and S ∋ s

1 if a = c and S /∋ s

0 otherwise

be an indicator for the events S ∋ s (a = t) and S /∋ s (a = c).
For the variance of the estimator, note that only the numerator of the ratio in the definition of τ̃ is

stochastic. Using the definitions above, rewrite the numerator:∑
s∈S

1{S ∋ s}
∑
i∈I

wi(s, d)(Yi − µt)−
∑
s∈S

1{S /∋ s} πs

1− πs

∑
i∈I

wi(s, d)(Yi − µc)

=
∑
s∈S

∑
a∈{c,t}

T a
s

(
1{a = t}

∑
i∈I

wi(s, d)(Yi − µt)− 1{a = c} πs

1− πs

∑
i∈I

wi(s, d)(Yi − µc)
)

=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

Mm
i T a

s

(
1{a = t}wi(s, d)(Yi(m)− µt)− 1{a = c} πs

1− πs
wi(s, d)(Yi(m)− µc)

)
where, importantly, only Mm

i Ts,a is stochastic. For ease of notation, define

Ỹ s,a
i (m) ≡ 1{a = t}wi(s, d)(Yi(m)− µt)− 1{a = c} πs

1− πs
wi(s, d)(Yi(m)− µc)

=
(
− πs

1− πs

)1{a=c}
wi(s, d)(Yi(m)− µa)

where, for brevity, I suppress the dependence of Ỹ on d throughout.
Then

var
(∑

i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

Mm
i T a

s Ỹ s,a
i (m)

)
=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi′

∑
s′∈S

∑
a′∈{c,t}

cov(Mm
i T a

s ,Mm′

i′ T a′

s′ )Ỹ
s,a
i (m)Ỹ s′,a′

i′ (m′)

=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

var(Mm
i T a

s )Ỹ s,a
i (m)2

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
s′∈S

∑
a′∈{c,t}

1{s ̸= s′ or a ̸= a′} cov(Mm
i T a

s ,Mm
i T a′

s′ )Ỹ
s,a
i (m)Ỹ s′,a′

i (m)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{m ̸= m′} cov(Mm
i T a

s ,Mm′

i T a′

s′ )Ỹ
s,a
i (m)Ỹ s′,a′

i (m′)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′} cov(Mm
i T a

s ,Mm′

i′ T a′

s′ )Ỹ
s,a
i (m)Ỹ s′,a′

i′ (m′).

(OA1)
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Define
πm,a
i,s ≡ Pr(Mm

i T a
s = 1) πm,a,m′,a′

i,s,i′,s′ ≡ Pr(Mi
mT a

s = 1 and Mi′

m′T a′

s′ = 1)

such that cov(Mm
i T a

s ,Mm′

i′ T a′

s′ ) = πm,a,m′,a′

i,s,i′,s′ − πm,a
i,s πm′,a′

i′,s′ and var(Mm
i T a

s ) = πm,a
i,s (1− πm,a

i,s ).
Initially consider the first two (lines of) summations in the final expression in Equation (OA1), which

each have a single summation over i and m. Substituting the (co-) variances and then the definitions of
Ỹ s,a
i (m) yields∑

i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

var(Mm
i T a

s )Ỹ s,a
i (m)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
s′∈S

∑
a′∈{c,t}

1{s ̸= s′ or a ̸= a′} cov(Mm
i T a

s ,Mm
i T a′

s′ )Ỹ
s,a
i (m)Ỹ s′,a′

i (m)

=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

πm,a
i,s (1− πm,a

i,s )Ỹ s,a
i (m)2

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
s′∈S

∑
a′∈{c,t}

1{s ̸= s′ or a ̸= a′}
(
πm,a,m,a′

i,s,i,s′ − πm,a
i,s πm,a′

i,s′

)
Ỹ s,a
i (m)Ỹ s′,a′

i (m)

=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

πm,a
i,s wi(s, d)(Yi(m)− µa)

2 ·
(
(1− πm,a

i,s )
( πs

1− πs

)2·1{a=c}
wi(s, d)

)
+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
s′∈S

∑
a′∈{c,t}

1{s ̸= s′ or a ̸= a′}
(
πm,a,m,a′

i,s,i,s′ − πm,a
i,s πm,a′

i,s′

)
(−1)1{a̸=a′}

·
( πs

1− πs

)1{a=c}( πs′

1− πs′

)1{a′=c}
wi(s, d)wi(s

′, d)(Yi(m)− µa)(Yi(m)− µa′).

(OA2)

Next, consider the summations in the third (m ̸= m′) and fourth (i ̸= i′) lines of the final expression
in Equation (OA1). Separate these summations based on whether Mm

i Mm′

i′ = 0 with probability 1, such

that πm,m′

i,i′ = 0. For any given treatment assignment, only the potential outcome corresponding to a

single exposure of each individual is observed. Hence, for m ̸= m′, Mm
i Mm′

i = 0 with probability 1, and, by

definition, πm,a,m′,a′

i,s,i,s′ = 0 irrespective of s, s′, a, a′. Similarly, even when i ̸= i, Mm
i Mm′

i′ = 0 with probability
1 for some i,m, i′,m′ if there is at least one candidate treatment location that can affect both i and i′ and

m and m′ correspond to different assignments for such a location. Then, by definition, πm,m′

i,i′ = 0 and also

πm,a,m′,a′

i,s,i′,s′ = 0. Hence,∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{m ̸= m′} cov(Mm
i T a

s ,Mm′

i T a′

s′ )Ỹ
s,a
i (m)Ỹ s′,a′

i (m′)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′} cov(Mm
i T a

s ,Mm′

i′ T a′

s′ )Ỹ
s,a
i (m)Ỹ s′,a′

i′ (m′)

=−
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{m ̸= m′}πm,a
i,s πm′,a′

i,s′ Ỹ s,a
i (m)Ỹ s′,a′

i (m′)

−
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′}1{πm,m′

i,i′ = 0}πm,a
i,s πm′,a′

i′,s′ Ỹ s,a
i (m)Ỹ s′,a′

i′ (m′)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′}1{πm,m′

i,i′ > 0}
(
πm,a,m′,a′

i,s,i′,s′ − πm,a
i,s πm′,a′

i′,s′

)
Ỹ s,a
i (m)Ỹ s′,a′

i′ (m′).

The first line equals exactly the “missing” i = i′ terms of the second line because πm,m′

i,i = 0 if and only if
m ̸= m′. Combining these lines, it is then convenient to treat cases a = a′ and a ̸= a′ separately because the
sign of the terms multiplying potential outcomes Yi(m)Yi′(m

′) differs across the two cases such that they need
to be bounded differently (in estimation because the potential outcomes cannot be observed simultaneously
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for conflicting exposures). The expression above, therefore, equals

=−
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,a
i,s πm′,a

i′,s′ Ỹ
s,a
i (m)Ỹ s′,a

i′ (m′)

− 2
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,t
i,s πm′,c

i′,s′ Ỹ
s,t
i (m)Ỹ s′,c

i′ (m′)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′}1{πm,m′

i,i′ > 0}
(
πm,a,m′,a′

i,s,i′,s′ − πm,a
i,s πm′,a′

i′,s′

)
Ỹ s,a
i (m)Ỹ s′,a′

i′ (m′).

(OA3)

Substituting for Ỹ s,a
i (m), the products Ỹ s,a

i (m)Ỹ s′,a′

i′ (m′) are

Ỹ s,a
i (m)Ỹ s′,a

i′ (m′) =
( πs

1− πs

πs′

1− πs′

)1{a=c}
wi(s, d)wi′(s

′, d)(Yi(m)− µa)(Yi′(m
′)− µa)

Ỹ s,t
i (m)Ỹ s′,c

i′ (m′) = − πs′

1− πs′
wi(s, d)wi′(s

′, d)(Yi(m)− µt)(Yi′(m
′)− µc),

and using the first and second binomial formulas:

−(Yi(m)− µa)(Yi′(m
′)− µa) =

1

2
(Yi(m)− µa)

2 +
1

2
(Yi′(m

′)− µa)
2 − 2(

Yi(m) + Yi′(m
′)

2
− µa)

2

2(Yi(m)− µt)(Yi′(m
′)− µc) = (Yi(m)− µt)

2 + (Yi′(m
′)− µc)

2 −
(
(Yi(m)− Yi′(m

′))− (µt − µc)
)2
.

Substituting these equations sequentially into the first and second line of Equation (OA3):

=−
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,a
i,s πm′,a

i′,s′

( πs

1− πs

πs′

1− πs′

)1{a=c}

· wi(s, d)wi′(s
′, d)(Yi(m)− µa)(Yi′(m

′)− µa)

+ 2
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,t
i,s πm′,c

i′,s′
πs′

1− πs′

· wi(s, d)wi′(s
′, d)(Yi(m)− µt)(Yi′(m

′)− µc)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′}1{πm,m′

i,i′ > 0}
(
πm,a,m′,a′

i,s,i′,s′ − πm,a
i,s πm′,a′

i′,s′

)
Ỹ s,a
i (m)Ỹ s′,a′

i′ (m′)

=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,a
i,s πm′,a

i′,s′

( πs

1− πs

πs′

1− πs′

)1{a=c}

· wi(s, d)wi′(s
′, d)

(1
2
(Yi(m)− µa)

2 +
1

2
(Yi′(m

′)− µa)
2 − 2

(Yi(m) + Yi′(m
′)

2
− µa

)2)
+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,t
i,s πm′,c

i′,s′
πs′

1− πs′

· wi(s, d)wi′(s
′, d)

(
(Yi(m)− µt)

2 + (Yi′(m
′)− µc)

2 −
(
(Yi(m)− Yi′(m

′))− (µt − µc)
)2)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′}1{πm,m′

i,i′ > 0}
(
πm,a,m′,a′

i,s,i′,s′ − πm,a
i,s πm′,a′

i′,s′

)
Ỹ s,a
i (m)Ỹ s′,a′

i′ (m′)

Splitting the summations into some that square single potential outcomes and others that square averages
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or differences of potential outcomes:

=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

πm,a
i,s

( πs

1− πs

)1{a=c}
wi(s, d)(Yi(m)− µa)

2

·
∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm′,a
i′,s′

( πs′

1− πs′

)1{a=c}
wi′(s

′, d)

− 2
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,a
i,s πm′,a

i′,s′

( πs

1− πs

πs′

1− πs′

)1{a=c}

· wi(s, d)wi′(s
′, d)

(Yi(m) + Yi′(m
′)

2
− µa

)2
+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

πm,a
i,s

( πs

1− πs

)1{a=c}
wi(s, d)(Yi(m)− µa)

2

·
∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}\{a}

1{πm,m′

i,i′ = 0}πm′,a′

i′,s′

( πs′

1− πs′

)1{a′=c}
wi′(s

′, d)

−
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,t
i,s πm′,c

i′,s′
πs′

1− πs′

· wi(s, d)wi′(s
′, d)

(
(Yi(m)− Yi′(m

′))− (µt − µc)
)2

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}

1{i ̸= i′}1{πm,m′

i,i′ > 0}
(
πm,a,m′,a′

i,s,i′,s′ − πm,a
i,s πm′,a′

i′,s′

)
Ỹ s,a
i (m)Ỹ s′,a′

i′ (m′)

(OA4)
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Finally, combine the results in Equations (OA1), (OA2), and (OA4), and substitute Ỹ s,a
i (m). Then

var
(∑

i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

Mm
i T a

s Ỹ s,a
i (m)

)
=
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

πm,a
i,s wi(s, d)(Yi(m)− µa)

2 ·
(
(1− πm,a

i,s )
( πs

1− πs

)2·1{a=c}
wi(s, d)

)
+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
s′∈S

∑
a′∈{c,t}

1{s ̸= s′ or a ̸= a′}
(
πm,a,m,a′

i,s,i,s′ − πm,a
i,s πm,a′

i,s′

)
(−1)1{a̸=a′}

·
( πs

1− πs

)1{a=c}( πs′

1− πs′

)1{a′=c}
wi(s, d)wi(s

′, d)(Yi(m)− µa)(Yi(m)− µa′)

+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

πm,a
i,s wi(s, d)(Yi(m)− µa)

2

·
( πs

1− πs

)1{a=c}∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm′,a
i′,s′

( πs′

1− πs′

)1{a=c}
wi′(s

′, d)

− 2
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

∑
i′∈I

∑
m′∈Mi

∑
s′∈S

1{πm,m′

i,i′ = 0}πm,a
i,s πm′,a

i′,s′

( πs

1− πs

πs′

1− πs′

)1{a=c}

· wi(s, d)wi′(s
′, d)

(Yi(m) + Yi′(m
′)

2
− µa

)2
+
∑
i∈I

∑
m∈Mi

∑
s∈S

∑
a∈{c,t}

πm,a
i,s wi(s, d)(Yi(m)− µa)

2

·
( πs

1− πs

)1{a=c}∑
i′∈I

∑
m′∈Mi

∑
s′∈S

∑
a′∈{c,t}\{a}

1{πm,m′

i,i′ = 0}πm′,a′

i′,s′

( πs′

1− πs′

)1{a′=c}
wi′(s

′, d)
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The first, third, and fifth summations all contain πm,a
i,s wi(s, d)(Yi(m) − µa)

2 post-multiplied by different
factors. Hence, they can be combined.

Recall that the denominator used in τ̃ equals
∑

s∈S πs

∑
i∈I wi(s, d). Define

n̄(d) ≡ 1

S
∑
s∈S

πs

∑
i∈I

wi(s, d).
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where

vm,a
i,s (d) ≡

( πs
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Then var(τ̃(d)) = 1
|S| (Ṽt(d) + Ṽc(d) + Ṽ×(d)− Ṽtt(d)− Ṽcc(d)− Ṽct(d)) as stated in the theorem.

10 Quality of Approximations in Simulations

I assess the quality of the approximation τ̂ ≈ τ̃ in the setting with separate regions through simulations. The
design-based results of this paper describe re-assignment of treatment within a fixed and finite population.
I first simulate, for a single such population, this thought experiment and assess the quality of the approxi-
mation, estimator, and coverage of confidence intervals based on the estimated approximate variance. Then,
I repeat the simulations for other such populations and report summary statistics of the assessments across
populations.

I simulate populations of candidate treatment locations with their probabilities and individuals with
their potential outcomes as follows. In each population, there are 100 regions. The treatment probability
of each region is 0.3, such that in each assignment exactly 30 regions are treated and 70 regions are in the
control group. In each region, there are 3 candidate treatment locations. The treatment probability of each
candidate location, conditional on treatment in the region, is drawn i.i.d. from the Uniform(0, 1) distribution
and then normalized such that the probabilities sum to one within each region. The number of individuals
at the distance of interest (d ± h) from each candidate location is equal to 1 plus an i.i.d. draw from the
Poisson distribution with mean 19, for a mean number of individuals equal to 20 with variance 19. Potential
outcomes in the absence of treatment are i.i.d. normal with mean 0 and variance 1. Treatment effects (at
the distance of interest) are i.i.d. normal with mean 1 and variance 0.5.

The treatment assignment in a given population follows Assumptions 2 and 3. For each population, I
simulate 1,000 treatment assignments to approximate the design distribution. I calculate the estimators
τ̂ and τ̃ , as well as the Horvitz-Thompson estimator τ̂HT that is defined similar to τ̂ with denominators
replaced by their expected values (or, identically, τ̃ without the centering). I compute the bias relative to
the population-specific ATT. I compute the variance of each of the three estimators as well their correlations.
Finally, I also compute how frequently confidence intervals formed by taking τ̂ ± 1.96 · se cover the ATT of
the population, where se is the square root of the proposed feasible variance estimator.

I repeat these simulations for 1,000 such populations and report summary statistics (mean and quantiles)
of the population-specific statistics in Table OA4. The first column shows the 0.01 quantile across these
populations, the second column shows the mean, the third column shows the median, and the fourth column
shows the 0.99 quantile. The first two rows show the absolute bias (multiplied by 100) of the estimators τ̂ and
τ̂HT . Note that the Horvitz-Thompson estimator is exactly unbiased over the design distribution for each
population. Hence, any bias for τ̂HT is due to a difference between the distribution of the 1,000 assignments
simulated for each population and the true design distribution. While the recommended estimator, τ̂ , is not
necessarily exactly unbiased over the design distribution, its bias in these simulations is small enough such
that it is similar to the simulation noise evident in the non-zero bias of τ̂HT .

Rows 3 and 4 show the design-based variance of τ̂ and τ̂HT relative to the design-based variance of the
infeasible τ̃ . For 98% of simulated populations, the design-based variance of τ̂ is within 1% of the design-
based variance of τ̃ . At least in these simulations, using the variance of τ̃ in place of the variance of τ̂ is
innocuous. The Horvitz-Thompson estimator, in contrast, has larger design-based variance for all simulated
populations. Its variance in these simulations is typically 60% than the variance of τ̃ . The reason the
variances of τ̂ and τ̃ are so similar is that in any given sample the two estimators are extremely close. In
fact, even for the populations where the two estimators are the least alike, their correlation is rounded to 1
(row 5). The correlation of τ̂HT and τ̃ is also high, but, nevertheless, noticeably lower (row 6).

Row 6 shows that the confidence intervals using the estimated variance have close to nominal coverage
in all populations. Coverage may be below nominal levels for three reasons. First, in finite samples, the
estimated variance differs from the true variance. Second, the normal approximation may be inaccurate in
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Table OA4: Summary statistics of design-based properties across simulated populations.

0.01 quantile mean median 0.99 quantile

absolute bias τ̂ 0 0.13 0.11 0.41
absolute bias τ̂HT 0 0.16 0.13 0.52
var(τ̂)/ var(τ̃) 0.99 1 1 1.01
var(τ̂HT )/ var(τ̃) 1.33 1.61 1.6 1.95
cor(τ̂ , τ̃) 1 1 1 1
cor(τ̂HT , τ̃) 0.71 0.79 0.79 0.85
coverage 95% CI 0.92 0.94 0.94 0.96

finite samples. Third, there are small differences between the estimators τ̂ and τ̃ . In these simulations, two
reasons unambiguously push the estimated variance to exceed the true variance. First, there is treatment
effect heterogeneity and the variance of treatment effects term Ṽ region

ct cannot be estimated. Second, there
are multiple candidate treatment locations in all regions, such that Ṽ region

t cannot be estimated and must
instead be bounded by the larger Ṽ location

t . On net, these factors balance out to close to nominal coverage
for all populations in these simulations.

Overall, the simulation results support the recommendations of this paper to use the estimator τ̂ and to
do inference using estimates of the variance of the infeasible estimator τ̃ .
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